Shaomeng Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6598285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mcl-1 levels critically impact the sensitivities of human colorectal cancer cells to APG-1252-M1, a novel Bcl-2/Bcl-XL dual inhibitor that induces Bax-dependent apoptosis. Neoplasia, 2022, 29, 100798.	5.3	5
2	Therapeutic efficacy of the novel SHP2 degrader SHP2-D26, alone or in combination, against lung cancer is associated with modulation of p70S6K/S6, Bim and Mcl-1. Cancer Gene Therapy, 2022, 29, 1558-1569.	4.6	7
3	The novel BET degrader, QCA570, is highly active against the growth of human NSCLC cells and synergizes with osimertinib in suppressing osimertinib-resistant EGFR-mutant NSCLC cells American Journal of Cancer Research, 2022, 12, 779-792.	1.4	0
4	Discovery of a novel ALK/ROS1/FAK inhibitor, APG-2449, in preclinical non-small cell lung cancer and ovarian cancer models. BMC Cancer, 2022, 22, .	2.6	13
5	Therapeutic Strategies to Target the Androgen Receptor. Journal of Medicinal Chemistry, 2022, 65, 8772-8797.	6.4	18
6	Potency and Selectivity Optimization of Tryptophanolâ€Derived Oxazoloisoindolinones: Novel p53 Activators in Human Colorectal Cancer. ChemMedChem, 2021, 16, 250-258.	3.2	6
7	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	7.6	0
8	Targeting transcriptional regulation of SARS-CoV-2 entry factors <i>ACE2</i> and <i>TMPRSS2</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	142
9	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	4.6	0
10	Follicular Lymphoma–associated BTK Mutations are Inactivating Resulting in Augmented AKT Activation. Clinical Cancer Research, 2021, 27, 2301-2313.	7.0	16
11	The ubiquitin ligase MDM2 sustains STAT5 stability to control T cell-mediated antitumor immunity. Nature Immunology, 2021, 22, 460-470.	14.5	50
12	Topography of transcriptionally active chromatin in glioblastoma. Science Advances, 2021, 7, .	10.3	19
13	SD-91 as A Potent and Selective STAT3 Degrader Capable of Achieving Complete and Long-Lasting Tumor Regression. ACS Medicinal Chemistry Letters, 2021, 12, 996-1004.	2.8	21
14	Selective inhibition of cullin 3 neddylation through covalent targeting DCN1 protects mice from acetaminophen-induced liver toxicity. Nature Communications, 2021, 12, 2621.	12.8	15
15	Discovery of M-1121 as an Orally Active Covalent Inhibitor of Menin-MLL Interaction Capable of Achieving Complete and Long-Lasting Tumor Regression. Journal of Medicinal Chemistry, 2021, 64, 10333-10349.	6.4	13
16	Strategies toward Discovery of Potent and Orally Bioavailable Proteolysis Targeting Chimera Degraders of Androgen Receptor for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 2021, 64, 12831-12854.	6.4	69
17	Discovery of ARD-2585 as an Exceptionally Potent and Orally Active PROTAC Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer. Journal of Medicinal Chemistry, 2021, 64, 13487-13509.	6.4	78
18	Discovery of New 4-Indolyl Quinazoline Derivatives as Highly Potent and Orally Bioavailable P-Glycoprotein Inhibitors. Journal of Medicinal Chemistry, 2021, 64, 14895-14911.	6.4	27

#	Article	IF	CITATIONS
19	Discovery of EEDi-5273 as an Exceptionally Potent and Orally Efficacious EED Inhibitor Capable of Achieving Complete and Persistent Tumor Regression. Journal of Medicinal Chemistry, 2021, 64, 14540-14556.	6.4	14
20	BET protein degradation triggers DR5-mediated immunogenic cell death to suppress colorectal cancer and potentiate immune checkpoint blockade. Oncogene, 2021, 40, 6566-6578.	5.9	14
21	Androgen receptor degraders overcome common resistance mechanisms developed during prostate cancer treatment. Neoplasia, 2020, 22, 111-119.	5.3	101
22	A highly potent PROTAC androgen receptor (AR) degrader ARD-61 effectively inhibits AR-positive breast cancer cell growth in vitro and tumor growth in vivo. Neoplasia, 2020, 22, 522-532.	5.3	44
23	Epigenetics 2.0: Special Issue on Epigenetics—Call for Papers. Journal of Medicinal Chemistry, 2020, 63, 12129-12130.	6.4	1
24	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	4.9	0
25	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	2.5	Ο
26	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	5.2	0
27	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	11.3	Ο
28	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	3.4	0
29	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	3.5	Ο
30	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	2.7	0
31	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	17.4	1
32	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	4.8	0
33	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		Ο
34	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	14.6	2
35	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	6.6	0
36	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	4.9	0

#	Article	IF	CITATIONS
37	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	6.7	Ο
38	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	6.5	0
39	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	6.7	0
40	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	8.7	1
41	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	2.3	1
42	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	3.7	0
43	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	3.5	Ο
44	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	4.4	0
45	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
46	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	2.8	0
47	Selectively Targeting Tropomyosin Receptor Kinase A (TRKA) via PROTACs. Journal of Medicinal Chemistry, 2020, 63, 14560-14561.	6.4	5
48	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
49	Discovery of CJ-2360 as a Potent and Orally Active Inhibitor of Anaplastic Lymphoma Kinase Capable of Achieving Complete Tumor Regression. Journal of Medicinal Chemistry, 2020, 63, 13994-14016.	6.4	11
50	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	4.6	1
51	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	5.1	Ο
52	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	11.3	1
53	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	3.7	0
54	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	3.0	0

#	Article	IF	CITATIONS
55	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	2.8	Ο
56	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	2.8	1
57	Excellence in Medicinal Chemistry Research from Japan. Journal of Medicinal Chemistry, 2020, 63, 8877-8879.	6.4	0
58	Confronting Racism in Chemistry Journals. Energy & amp; Fuels, 2020, 34, 7771-7773.	5.1	0
59	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	7.8	0
60	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	14.6	2
61	The 2020 Nobel Prize in Physiology or Medicine. Journal of Medicinal Chemistry, 2020, 63, 13197-13204.	6.4	5
62	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biochemistry, 2020, 59, 1641-1642.	2.5	0
63	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.9	0
64	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	2.7	0
65	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	3.5	0
66	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	4.3	0
67	Introduction: Drug Metabolism and Toxicology Special Issue. Journal of Medicinal Chemistry, 2020, 63, 6249-6250.	6.4	2
68	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	8.0	5
69	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	3.1	0
70	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	4.6	0
71	Discovery of Potent Small-Molecule Inhibitors of MLL Methyltransferase. ACS Medicinal Chemistry Letters, 2020, 11, 1348-1352.	2.8	9
72	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	3.8	0

#	Article	IF	CITATIONS
73	Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. Journal of Medicinal Chemistry, 2020, 63, 7510-7528.	6.4	89
74	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	5.1	0
75	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	5.3	0
76	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	3.2	0
77	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	6.5	о
78	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	2.3	0
79	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	2.7	Ο
80	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	6.7	0
81	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	6.7	0
82	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	3.3	0
83	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	4.0	Ο
84	EEDi-5285: An Exceptionally Potent, Efficacious, and Orally Active Small-Molecule Inhibitor of Embryonic Ectoderm Development. Journal of Medicinal Chemistry, 2020, 63, 7252-7267.	6.4	22
85	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	5.0	Ο
86	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	4.4	0
87	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	3.4	0
88	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	5.3	0
89	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	4.6	4
90	Confronting Racism in Chemistry Journals. ACS Applied Materials & amp; Interfaces, 2020, 12, 28925-28927.	8.0	13

#	Article	IF	CITATIONS
91	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	3.0	1
92	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	47.7	2
93	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	11.2	1
94	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	5.4	0
95	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	6.4	0
96	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	4.8	0
97	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	9.1	5
98	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	2.3	0
99	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	13.7	1
100	BRD4 Levels Determine the Response of Human Lung Cancer Cells to BET Degraders That Potently Induce Apoptosis through Suppression of Mcl-1. Cancer Research, 2020, 80, 2380-2393.	0.9	28
101	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	15.6	0
102	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	2.5	0
103	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	17.4	0
104	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	5.4	0
105	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	3.7	0
106	Artificial Intelligence in Drug Discovery: Into the Great Wide Open. Journal of Medicinal Chemistry, 2020, 63, 8651-8652.	6.4	40
107	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	2.6	1
108	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	5.2	0

#	Article	IF	CITATIONS
109	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	2.6	0
110	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	3.6	0
111	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	5.0	0
112	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	3.0	0
113	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	3.8	0
114	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.9	0
115	Update to Our Reader, Reviewer, and Author Communities—April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	3.6	Ο
116	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	2.1	0
117	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	3.3	0
118	Update to Our Reader, Reviewer, and Author Communities—April 2020. Energy & Fuels, 2020, 34, 5107-5108.	5.1	0
119	Women in Medicinal Chemistry: Ad Maiora!. Journal of Medicinal Chemistry, 2020, 63, 1777-1778.	6.4	3
120	Drug Annotations for a New Decade. Journal of Medicinal Chemistry, 2020, 63, 883-883.	6.4	1
121	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	4.6	0
122	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	3.2	0
123	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	2.8	0
124	Update to Our Reader, Reviewer, and Author Communities—April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	15.6	0
125	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967	5.4	0
126	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Reviews, 2020, 120, 3939-3940.	47.7	0

#	Article	IF	CITATIONS
127	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	10.0	0
128	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	3.5	0
129	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	4.6	Ο
130	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	3.8	0
131	Update to Our Reader, Reviewer, and Author Communities—April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	3.0	1
132	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	6.4	0
133	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	2.5	0
134	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	9.1	0
135	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	7.8	0
136	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	5.4	0
137	Discovery of M-808 as a Highly Potent, Covalent, Small-Molecule Inhibitor of the Menin–MLL Interaction with Strong <i>In Vivo</i> Antitumor Activity. Journal of Medicinal Chemistry, 2020, 63, 4997-5010.	6.4	23
138	Update to Our Reader, Reviewer, and Author Communities—April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	3.7	0
139	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	13.7	3
140	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	4.0	0
141	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	2.3	0
142	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	4.6	0
143	Targeting DCN1-UBC12 Protein-Protein Interaction for Regulation of Neddylation Pathway. Advances in Experimental Medicine and Biology, 2020, 1217, 349-362.	1.6	8
144	Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Research and Treatment, 2020, 180, 611-622.	2.5	43

#	Article	IF	CITATIONS
145	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	5.2	1
146	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	3.5	1
147	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	4.3	0
148	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	5.2	0
149	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	2.7	0
150	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	8.7	0
151	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3.8	0
152	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	3.8	0
153	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	4.6	0
154	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	3.1	0
155	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	4.8	0
156	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	4.6	1
157	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	3.5	1
158	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	6.6	0
159	Confronting Racism in Chemistry Journals. Environmental Science & Technology, 2020, 54, 7735-7737.	10.0	0
160	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	2.1	0
161	A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression InÂVivo. Cancer Cell, 2019, 36, 498-511.e17.	16.8	364
162	Simple Structural Modifications Converting a Bona fide MDM2 PROTAC Degrader into a Molecular Glue Molecule: A Cautionary Tale in the Design of PROTAC Degraders. Journal of Medicinal Chemistry, 2019, 62, 9471-9487.	6.4	99

#	Article	IF	CITATIONS
163	Structure-Based Discovery of M-89 as a Highly Potent Inhibitor of the Menin-Mixed Lineage Leukemia (Menin-MLL) Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019, 62, 6015-6034.	6.4	20
164	Potent 5-Cyano-6-phenyl-pyrimidin-Based Derivatives Targeting DCN1–UBE2M Interaction. Journal of Medicinal Chemistry, 2019, 62, 5382-5403.	6.4	34
165	The Future Is Now: Artificial Intelligence in Drug Discovery. Journal of Medicinal Chemistry, 2019, 62, 5249-5249.	6.4	3
166	The Direct Molecular Target for Imipridone ONC201 Is Finally Established. Cancer Cell, 2019, 35, 707-708.	16.8	21
167	Small-molecule PROTAC degraders of the Bromodomain and Extra Terminal (BET) proteins — A review. Drug Discovery Today: Technologies, 2019, 31, 43-51.	4.0	92
168	Chemical suppression of specific C-C chemokine signaling pathways enhances cardiac reprogramming. Journal of Biological Chemistry, 2019, 294, 9134-9146.	3.4	20
169	Functional and Mechanistic Interrogation of BET Bromodomain Degraders for the Treatment of Metastatic Castration-resistant Prostate Cancer. Clinical Cancer Research, 2019, 25, 4038-4048.	7.0	26
170	Women in Medicinal Chemistry Special Issue Call for Papers. Journal of Medicinal Chemistry, 2019, 62, 3783-3783.	6.4	6
171	A Message from the Editors-in-Chief. Journal of Medicinal Chemistry, 2019, 62, 2215-2216.	6.4	0
172	Characterizing the Therapeutic Potential of a Potent BET Degrader in Merkel Cell Carcinoma. Neoplasia, 2019, 21, 322-330.	5.3	10
173	Development of Highly Potent, Selective, and Cellular Active Triazolo[1,5- <i>a</i>]pyrimidine-Based Inhibitors Targeting the DCN1–UBC12 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019, 62, 2772-2797.	6.4	59
174	Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein. Journal of Medicinal Chemistry, 2019, 62, 11280-11300.	6.4	133
175	Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. Journal of Medicinal Chemistry, 2019, 62, 11218-11231.	6.4	138
176	Casein kinase-1Î ³ 1 and 3 stimulate tumor necrosis factor-induced necroptosis through RIPK3. Cell Death and Disease, 2019, 10, 923.	6.3	22
177	Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER). Journal of Medicinal Chemistry, 2019, 62, 1420-1442.	6.4	176
178	Changing the Apoptosis Pathway through Evolutionary Protein Design. Journal of Molecular Biology, 2019, 431, 825-841.	4.2	16
179	Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. Journal of Medicinal Chemistry, 2019, 62, 941-964.	6.4	269
180	Drug Metabolism and Toxicology Special Issue Call for Papers. Journal of Medicinal Chemistry, 2019, 62, 1077-1077.	6.4	0

#	Article	IF	CITATIONS
181	Discovery of MD-224 as a First-in-Class, Highly Potent, and Efficacious Proteolysis Targeting Chimera Murine Double Minute 2 Degrader Capable of Achieving Complete and Durable Tumor Regression. Journal of Medicinal Chemistry, 2019, 62, 448-466.	6.4	211
182	Ablation of Cancer Stem Cells by Therapeutic Inhibition of the MDM2–p53 Interaction in Mucoepidermoid Carcinoma. Clinical Cancer Research, 2019, 25, 1588-1600.	7.0	17
183	Follicular lymphoma–associated mutations in vacuolar ATPase ATP6V1B2 activate autophagic flux and mTOR. Journal of Clinical Investigation, 2019, 129, 1626-1640.	8.2	23
184	High-Affinity Peptidomimetic Inhibitors of the DCN1-UBC12 Protein–Protein Interaction. Journal of Medicinal Chemistry, 2018, 61, 1934-1950.	6.4	46
185	Resistance to BET Inhibitor Leads to Alternative Therapeutic Vulnerabilities in Castration-Resistant Prostate Cancer. Cell Reports, 2018, 22, 2236-2245.	6.4	60
186	Allosteric Modulators of Drug Targets Special Issue. Journal of Medicinal Chemistry, 2018, 61, 1381-1381.	6.4	0
187	Design of the Firstâ€inâ€Class, Highly Potent Irreversible Inhibitor Targeting the Meninâ€MLL Protein–Protein Interaction. Angewandte Chemie - International Edition, 2018, 57, 1601-1605.	13.8	49
188	Design of the Firstâ€in lass, Highly Potent Irreversible Inhibitor Targeting the Meninâ€MLL Protein–Protein Interaction. Angewandte Chemie, 2018, 130, 1617-1621.	2.0	1
189	Cyclic Peptidic Mimetics of Apollo Peptides Targeting Telomeric Repeat Binding Factor 2 (TRF2) and Apollo Interaction. ACS Medicinal Chemistry Letters, 2018, 9, 507-511.	2.8	10
190	Discovery of a Small-Molecule Degrader of Bromodomain and Extra-Terminal (BET) Proteins with Picomolar Cellular Potencies and Capable of Achieving Tumor Regression. Journal of Medicinal Chemistry, 2018, 61, 462-481.	6.4	288
191	Structure-Based Discovery of CF53 as a Potent and Orally Bioavailable Bromodomain and Extra-Terminal (BET) Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2018, 61, 6110-6120.	6.4	33
192	Discovery of QCA570 as an Exceptionally Potent and Efficacious Proteolysis Targeting Chimera (PROTAC) Degrader of the Bromodomain and Extra-Terminal (BET) Proteins Capable of Inducing Complete and Durable Tumor Regression. Journal of Medicinal Chemistry, 2018, 61, 6685-6704.	6.4	204
193	Induction of p53 suppresses chronic myeloid leukemia. Leukemia and Lymphoma, 2017, 58, 2165-2175.	1.3	10
194	Targeted Degradation of BET Proteins in Triple-Negative Breast Cancer. Cancer Research, 2017, 77, 2476-2487.	0.9	173
195	Current Medicinal Chemistry Research in India: Progress and Opportunities. Journal of Medicinal Chemistry, 2017, 60, 1619-1619.	6.4	0
196	Targeting the MDM2–p53 Protein–Protein Interaction for New Cancer Therapy: Progress and Challenges. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a026245.	6.2	217
197	The Ecstasy and Agony of Assay Interference Compounds. Journal of Medicinal Chemistry, 2017, 60, 2165-2168.	6.4	113
198	The Ecstasy and Agony of Assay Interference Compounds. ACS Central Science, 2017, 3, 143-147.	11.3	78

#	Article	IF	CITATIONS
199	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Biology, 2017, 12, 575-578.	3.4	14
200	The Ecstasy and Agony of Assay Interference Compounds. ACS Chemical Neuroscience, 2017, 8, 420-423.	3.5	8
201	The Ecstasy and Agony of Assay Interference Compounds. Biochemistry, 2017, 56, 1363-1366.	2.5	8
202	The Ecstasy and Agony of Assay Interference Compounds. Journal of Chemical Information and Modeling, 2017, 57, 387-390.	5.4	20
203	The Ecstasy and Agony of Assay Interference Compounds. ACS Medicinal Chemistry Letters, 2017, 8, 379-382.	2.8	35
204	Allosteric Inactivation of Polycomb Repressive Complex 2 (PRC2) by Inhibiting Its Adapter Protein: Embryonic Ectodomain Development (EED). Journal of Medicinal Chemistry, 2017, 60, 2212-2214.	6.4	10
205	Structure-Based Discovery of 4-(6-Methoxy-2-methyl-4-(quinolin-4-yl)-9 <i>H</i> -pyrimido[4,5- <i>b</i>]indol-7-yl)-3,5-dimethylisoxazole (CD161) as a Potent and Orally Bioavailable BET Bromodomain Inhibitor. Journal of Medicinal Chemistry, 2017, 60, 3887-3901	6.4	36
206	Discovery of a Highly Potent, Cell-Permeable Macrocyclic Peptidomimetic (MM-589) Targeting the WD Repeat Domain 5 Protein (WDR5)–Mixed Lineage Leukemia (MLL) Protein–Protein Interaction. Journal of Medicinal Chemistry, 2017, 60, 4818-4839.	6.4	72
207	Development of Peptidomimetic Inhibitors of the ERG Gene Fusion Product in Prostate Cancer. Cancer Cell, 2017, 31, 532-548.e7.	16.8	85
208	The Ecstasy and Agony of Assay Interference Compounds. ACS Infectious Diseases, 2017, 3, 259-262.	3.8	4
209	Discovery of 4-((3′ <i>R</i> ,4′ <i>S</i> ,5′ <i>R</i>)-6″-Chloro-4′-(3-chloro-2-fluorophenyl)-1′-ethyl-2″-oxodis Acid (AA-115/APG-115): A Potent and Orally Active Murine Double Minute 2 (MDM2) Inhibitor in Clinical Development, Journal of Medicinal Chemistry, 2017, 60, 2819-2839.	spiro[cyclo	ohexane-1,2â
210	A covalently bound inhibitor triggers <scp>EZH</scp> 2 degradation through <scp>CHIP</scp> â€mediated ubiquitination. EMBO Journal, 2017, 36, 1243-1260.	7.8	67
211	A potent small-molecule inhibitor of the DCN1-UBC12 interaction that selectively blocks cullin 3 neddylation. Nature Communications, 2017, 8, 1150.	12.8	71
212	Therapeutic Inhibition of the MDM2–p53 Interaction Prevents Recurrence of Adenoid Cystic Carcinomas. Clinical Cancer Research, 2017, 23, 1036-1048.	7.0	27
213	IAPs protect host target tissues from graft-versus-host disease in mice. Blood Advances, 2017, 1, 1517-1532.	5.2	15
214	Functional Analyses of BTK Mutations in Follicular Lymphoma. Blood, 2017, 130, 647-647.	1.4	0
215	Inducing Protein Degradation as a Therapeutic Strategy. Journal of Medicinal Chemistry, 2016, 59, 5129-5130.	6.4	20
216	MDM2 Inhibition Sensitizes Prostate Cancer Cells to Androgen Ablation and Radiotherapy in a p53-Dependent Manner. Neoplasia, 2016, 18, 213-222.	5.3	51

#	Article	IF	CITATIONS
217	Role of BET proteins in castration-resistant prostate cancer. Drug Discovery Today: Technologies, 2016, 19, 29-38.	4.0	15
218	Reactivation of p53 by MDM2 Inhibitor MI-77301 for the Treatment of Endocrine-Resistant Breast Cancer. Molecular Cancer Therapeutics, 2016, 15, 2887-2893.	4.1	29
219	Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discovery, 2016, 2, 16036.	6.7	42
220	MLL1 and MLL1 fusion proteins have distinct functions in regulating leukemic transcription program. Cell Discovery, 2016, 2, 16008.	6.7	34
221	Recurrent Mutations in the MTOR Regulator RRAGC in Follicular Lymphoma. Clinical Cancer Research, 2016, 22, 5383-5393.	7.0	36
222	A phase II trial of the BCL-2 homolog domain 3 mimetic AT-101 in combination with docetaxel for recurrent, locally advanced, or metastatic head and neck cancer. Investigational New Drugs, 2016, 34, 481-489.	2.6	30
223	Epigenetics: Novel Therapeutics Targeting Epigenetics. Journal of Medicinal Chemistry, 2016, 59, 1247-1248.	6.4	20
224	BET Bromodomain Inhibitors Enhance Efficacy and Disrupt Resistance to AR Antagonists in the Treatment of Prostate Cancer. Molecular Cancer Research, 2016, 14, 324-331.	3.4	137
225	Design of High-Affinity Stapled Peptides To Target the Repressor Activator Protein 1 (RAP1)/Telomeric Repeat-Binding Factor 2 (TRF2) Protein–Protein Interaction in the Shelterin Complex. Journal of Medicinal Chemistry, 2016, 59, 328-334.	6.4	18
226	Elucidation of Resistance Mechanisms to Second-Generation ALK Inhibitors Alectinib and Ceritinib in Non–Small Cell Lung Cancer Cells. Neoplasia, 2016, 18, 162-171.	5.3	57
227	MLL1 Inhibition Reprograms Epiblast Stem Cells to Naive Pluripotency. Cell Stem Cell, 2016, 18, 481-494.	11.1	57
228	Targeting MDM2 for Treatment of Adenoid Cystic Carcinoma. Clinical Cancer Research, 2016, 22, 3550-3559.	7.0	13
229	Targeting Inhibitor of Apoptosis Proteins Protects from Bleomycin-Induced Lung Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 482-492.	2.9	39
230	Spiromastilactones: A new class of influenza virus inhibitors from deep-sea fungus. European Journal of Medicinal Chemistry, 2016, 108, 229-244.	5.5	46
231	Functional Analyses of V-Atpase Mutations in Follicular Lymphoma. Blood, 2016, 128, 1762-1762.	1.4	0
232	Activating STAT6 mutations in follicular lymphoma. Blood, 2015, 125, 668-679.	1.4	117
233	Epigenetics: Novel Therapeutics Targeting Epigenetics. Journal of Medicinal Chemistry, 2015, 58, 523-524.	6.4	20
234	BH3-mimetic small molecule inhibits the growth and recurrence of adenoid cystic carcinoma. Oral Oncology, 2015, 51, 839-847.	1.5	13

#	Article	IF	CITATIONS
235	Structure-Based Design of Î ³ -Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors. Journal of Medicinal Chemistry, 2015, 58, 4927-4939.	6.4	89
236	BET bromodomain inhibition suppresses graft-versus-host disease after allogeneic bone marrow transplantation in mice. Blood, 2015, 125, 2724-2728.	1.4	41
237	Elucidation of Acquired Resistance to Bcl-2 and MDM2 Inhibitors in Acute Leukemia <i>In Vitro</i> and <i>In Vivo</i> . Clinical Cancer Research, 2015, 21, 2558-2568.	7.0	49
238	Structure-based design of conformationally constrained cyclic peptidomimetics to target the MLL1-WDR5 protein–protein interaction as inhibitors of the MLL1 methyltransferase activity. Chinese Chemical Letters, 2015, 26, 455-458.	9.0	4
239	Small-Molecule Inhibitors of the MDM2–p53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment. Journal of Medicinal Chemistry, 2015, 58, 1038-1052.	6.4	390
240	Case Study: Discovery of Inhibitors of the MDM2–p53 Protein-Protein Interaction. Methods in Molecular Biology, 2015, 1278, 567-585.	0.9	4
241	Significant Differences in the Development of Acquired Resistance to the MDM2 Inhibitor SAR405838 between In Vitro and In Vivo Drug Treatment. PLoS ONE, 2015, 10, e0128807.	2.5	23
242	SMAC mimetic Debio 1143 synergizes with taxanes, topoisomerase inhibitors and bromodomain inhibitors to impede growth of lung adenocarcinoma cells. Oncotarget, 2015, 6, 37410-37425.	1.8	18
243	Analysis of 54 Follicular Lymphomas By Whole Exome Sequencing Identifies Multiple Novel Recurrently Mutated Pathways. Blood, 2015, 126, 112-112.	1.4	1
244	Design of Chemically Stable, Potent, and Efficacious MDM2 Inhibitors That Exploit the Retro-Mannich Ring-Opening-Cyclization Reaction Mechanism in Spiro-oxindoles. Journal of Medicinal Chemistry, 2014, 57, 10486-10498.	6.4	57
245	Targeting Apoptosis Pathways for New Cancer Therapeutics. Annual Review of Medicine, 2014, 65, 139-155.	12.2	150
246	Pramipexole Derivatives as Potent and Selective Dopamine D ₃ Receptor Agonists with Improved Human Microsomal Stability. ChemMedChem, 2014, 9, 2653-2660.	3.2	9
247	Absolute Quantitative ¹ H NMR Spectroscopy for Compound Purity Determination. Journal of Medicinal Chemistry, 2014, 57, 9219-9219.	6.4	17
248	SAR405838: An Optimized Inhibitor of MDM2–p53 Interaction That Induces Complete and Durable Tumor Regression. Cancer Research, 2014, 74, 5855-5865.	0.9	261
249	Tranylcypromine Substituted <i>cis</i> -Hydroxycyclobutylnaphthamides as Potent and Selective Dopamine D ₃ Receptor Antagonists. Journal of Medicinal Chemistry, 2014, 57, 4962-4968.	6.4	47
250	Digital Chemistry in the <i>Journal of Medicinal Chemistry</i> . Journal of Medicinal Chemistry, 2014, 57, 1137-1137.	6.4	9
251	Potent and Selective Small-Molecule Inhibitors of cIAP1/2 Proteins Reveal That the Binding of Smac Mimetics to XIAP BIR3 Is Not Required for Their Effective Induction of Cell Death in Tumor Cells. ACS Chemical Biology, 2014, 9, 994-1002.	3.4	30
252	Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature, 2014, 510, 278-282.	27.8	811

#	Article	IF	CITATIONS
253	Targeting MLL1 H3K4 Methyltransferase Activity in Mixed-Lineage Leukemia. Molecular Cell, 2014, 53, 247-261.	9.7	252
254	Small-molecule SMAC mimetics as new cancer therapeutics. , 2014, 144, 82-95.		160
255	BM-1197: A Novel and Specific Bcl-2/Bcl-xL Inhibitor Inducing Complete and Long-Lasting Tumor Regression In Vivo. PLoS ONE, 2014, 9, e99404.	2.5	71
256	Physiologically based pharmacokinetic and pharmacodynamic modeling of an antagonist (SMâ€406/ATâ€406) of multiple inhibitor of apoptosis proteins (IAPs) in a mouse xenograft model of human breast cancer. Biopharmaceutics and Drug Disposition, 2013, 34, 348-359.	1.9	16
257	LDK378: A Promising Anaplastic Lymphoma Kinase (ALK) Inhibitor. Journal of Medicinal Chemistry, 2013, 56, 5673-5674.	6.4	46
258	Optimization and validation of mitochondria-based functional assay as a useful tool to identify BH3-like molecules selectively targeting anti-apoptotic Bcl-2 proteins. BMC Biotechnology, 2013, 13, 45.	3.3	5
259	RNF111-Dependent Neddylation Activates DNA Damage-Induced Ubiquitination. Molecular Cell, 2013, 49, 897-907.	9.7	107
260	Structure-Based Design of High-Affinity Macrocyclic Peptidomimetics to Block the Menin-Mixed Lineage Leukemia 1 (MLL1) Protein–Protein Interaction. Journal of Medicinal Chemistry, 2013, 56, 1113-1123.	6.4	78
261	High-Affinity, Small-Molecule Peptidomimetic Inhibitors of MLL1/WDR5 Protein–Protein Interaction. Journal of the American Chemical Society, 2013, 135, 669-682.	13.7	157
262	Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts. Cell Reports, 2013, 4, 1116-1130.	6.4	539
263	A Potent and Highly Efficacious Bcl-2/Bcl-xL Inhibitor. Journal of Medicinal Chemistry, 2013, 56, 3048-3067.	6.4	40
264	Hepatitis C Virus (HCV) Therapies Special Thematic Issue: Call for Papers. Journal of Medicinal Chemistry, 2013, 56, 387-387.	6.4	0
265	Diastereomeric Spirooxindoles as Highly Potent and Efficacious MDM2 Inhibitors. Journal of the American Chemical Society, 2013, 135, 7223-7234.	13.7	200
266	A Potent Small-Molecule Inhibitor of the MDM2–p53 Interaction (MI-888) Achieved Complete and Durable Tumor Regression in Mice. Journal of Medicinal Chemistry, 2013, 56, 5553-5561.	6.4	229
267	A Network of Substrates of the E3 Ubiquitin Ligases MDM2 and HUWE1 Control Apoptosis Independently of p53. Science Signaling, 2013, 6, ra32.	3.6	56
268	A sequence variant in the phospholipase C epsilon C2 domain is associated with esophageal carcinoma and esophagitis. Molecular Carcinogenesis, 2013, 52, 80-86.	2.7	15
269	A Potent Bivalent Smac Mimetic (SM-1200) Achieving Rapid, Complete, and Durable Tumor Regression in Mice. Journal of Medicinal Chemistry, 2013, 56, 3969-3979.	6.4	38
270	The Making of I-BET762, a BET Bromodomain Inhibitor Now in Clinical Development. Journal of Medicinal Chemistry, 2013, 56, 7498-7500.	6.4	82

#	Article	IF	CITATIONS
271	Identification of a Mutant Î ± 1 Na/K-ATPase That Pumps but Is Defective in Signal Transduction. Journal of Biological Chemistry, 2013, 288, 13295-13304.	3.4	55
272	The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes and Development, 2013, 27, 1752-1768.	5.9	132
273	Pyrimido[4,5â€ <i>d</i>]pyrimidinâ€4(1 <i>H</i>)â€one Derivatives as Selective Inhibitors of EGFR Threonine ⁷⁹⁰ to Methionine ⁷⁹⁰ (T790M) Mutants. Angewandte Chemie - International Edition, 2013, 52, 8387-8390.	13.8	30
274	LRIG1 Modulates Cancer Cell Sensitivity to Smac Mimetics by Regulating TNFα Expression and Receptor Tyrosine Kinase Signaling. Cancer Research, 2012, 72, 1229-1238.	0.9	32
275	Metronomic Dosing of BH3 Mimetic Small Molecule Yields Robust Antiangiogenic and Antitumor Effects. Cancer Research, 2012, 72, 716-725.	0.9	16
276	p53-mediated heterochromatin reorganization regulates its cell fate decisions. Nature Structural and Molecular Biology, 2012, 19, 478-484.	8.2	49
277	clAP1 and clAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death and Differentiation, 2012, 19, 1791-1801.	11.2	127
278	Targeting Inhibitors of Apoptosis Proteins (IAPs) For New Breast Cancer Therapeutics. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 217-228.	2.7	39
279	Transition in Leadership: Opportunities and Challenges. Journal of Medicinal Chemistry, 2012, 55, 1-1.	6.4	18
280	Correction to Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold. Journal of Medicinal Chemistry, 2012, 55, 5987-5987.	6.4	1
281	Structure-Based Discovery of BM-957 as a Potent Small-Molecule Inhibitor of Bcl-2 and Bcl-xL Capable of Achieving Complete Tumor Regression. Journal of Medicinal Chemistry, 2012, 55, 8502-8514.	6.4	50
282	High-affinity and selective dopamine D3 receptor full agonists. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5612-5617.	2.2	12
283	Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold. Journal of Medicinal Chemistry, 2012, 55, 4664-4682.	6.4	62
284	AT-406, an orally active antagonist of multiple inhibitor of apoptosis proteins, inhibits progression of human ovarian cancer. Cancer Biology and Therapy, 2012, 13, 804-811.	3.4	54
285	Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors. ACS Medicinal Chemistry Letters, 2012, 3, 308-312.	2.8	32
286	Bivalent Smac Mimetics with a Diazabicyclic Core as Highly Potent Antagonists of XIAP and cIAP1/2 and Novel Anticancer Agents. Journal of Medicinal Chemistry, 2012, 55, 106-114.	6.4	35
287	Design of Triazole-Stapled BCL9 α-Helical Peptides to Target the β-Catenin/B-Cell CLL/lymphoma 9 (BCL9) Protein–Protein Interaction. Journal of Medicinal Chemistry, 2012, 55, 1137-1146.	6.4	221
288	Hepatic TRAF2 Regulates Glucose Metabolism Through Enhancing Glucagon Responses. Diabetes, 2012, 61, 566-573.	0.6	50

#	Article	IF	CITATIONS
289	Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapeutics. Topics in Medicinal Chemistry, 2012, , 57-79.	0.8	60
290	Alzheimer's Disease Special Thematic Issue: Call for Papers. Journal of Medicinal Chemistry, 2012, 55, 2914-2914.	6.4	0
291	Smac-mimetic compound SM-164 induces radiosensitization in breast cancer cells through activation of caspases and induction of apoptosis. Breast Cancer Research and Treatment, 2012, 133, 189-199.	2.5	32
292	AM-8553: A Novel MDM2 Inhibitor with a Promising Outlook for Potential Clinical Development. Journal of Medicinal Chemistry, 2012, 55, 4934-4935.	6.4	32
293	Structure-Based Design of Potent Bcl-2/Bcl-xL Inhibitors with Strong in Vivo Antitumor Activity. Journal of Medicinal Chemistry, 2012, 55, 6149-6161.	6.4	49
294	Effects of pramipexole on the reinforcing effectiveness of stimuli that were previously paired with cocaine reinforcement in rats. Psychopharmacology, 2012, 219, 123-135.	3.1	23
295	CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes. Journal of Chemical Information and Modeling, 2011, 51, 2036-2046.	5.4	133
296	Correction to CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes. Journal of Chemical Information and Modeling, 2011, 51, 2146-2146.	5.4	4
297	CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions. Journal of Chemical Information and Modeling, 2011, 51, 2115-2131.	5.4	133
298	A Potent and Orally Active Antagonist (SM-406/AT-406) of Multiple Inhibitor of Apoptosis Proteins (IAPs) in Clinical Development for Cancer Treatment. Journal of Medicinal Chemistry, 2011, 54, 2714-2726.	6.4	241
299	Potent Bivalent Smac Mimetics: Effect of the Linker on Binding to Inhibitor of Apoptosis Proteins (IAPs) and Anticancer Activity. Journal of Medicinal Chemistry, 2011, 54, 3306-3318.	6.4	44
300	Hydrophobic Binding Hot Spots of Bcl-xL Proteinâ^'Protein Interfaces by Cosolvent Molecular Dynamics Simulation. ACS Medicinal Chemistry Letters, 2011, 2, 280-284.	2.8	51
301	CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist. ACS Medicinal Chemistry Letters, 2011, 2, 620-625.	2.8	19
302	Behavioral sensitization to cocaine in rats: evidence for temporal differences in dopamine D3 and D2 receptor sensitivity. Psychopharmacology, 2011, 215, 609-620.	3.1	27
303	Radiosensitization of Head and Neck Squamous Cell Carcinoma by a SMAC-Mimetic Compound, SM-164, Requires Activation of Caspases. Molecular Cancer Therapeutics, 2011, 10, 658-669.	4.1	41
304	In Vitro Metabolism of 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin in Human Liver Microsomes. Drug Metabolism and Disposition, 2011, 39, 627-635.	3.3	10
305	Therapeutic Potential and Molecular Mechanism of a Novel, Potent, Nonpeptide, Smac Mimetic SM-164 in Combination with TRAIL for Cancer Treatment. Molecular Cancer Therapeutics, 2011, 10, 902-914.	4.1	64
306	A Dual-Readout F ² Assay That Combines Fluorescence Resonance Energy Transfer and Fluorescence Polarization for Monitoring Bimolecular Interactions. Assay and Drug Development Technologies, 2011, 9, 382-393.	1.2	17

#	Article	IF	CITATIONS
307	Abstract LB-204: Highly potent and optimized small-molecule inhibitors of MDM2 achieve complete tumor regression in animal models of solid tumors and leukemia Cancer Research, 2011, 71, LB-204-LB-204.	0.9	3
308	Multiple distinct molecular mechanisms influence sensitivity and resistance to MDM2 inhibitors in adult acute myelogenous leukemia. Blood, 2010, 116, 71-80.	1.4	82
309	ATâ€101 (<i>R</i> â€(â^)â€gossypol acetic acid) enhances the effectiveness of androgen deprivation therapy in the VCaP prostate cancer model. Journal of Cellular Biochemistry, 2010, 110, 1187-1194.	2.6	21
310	Cyclopeptide Smac mimetics as antagonists of IAP proteins. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 3043-3046.	2.2	33
311	Metronomic Small Molecule Inhibitor of Bcl-2 (TW-37) Is Antiangiogenic and Potentiates the Antitumor Effect of Ionizing Radiation. International Journal of Radiation Oncology Biology Physics, 2010, 78, 879-887.	0.8	16
312	Case Study: Inhibitors of the MDM2â€p53 Protein–Protein Interaction. , 2010, , 273-293.		0
313	Smac Mimetic Compounds Potentiate Interleukin-1β-mediated Cell Death. Journal of Biological Chemistry, 2010, 285, 40612-40623.	3.4	19
314	Split Renilla Luciferase Protein Fragment-assisted Complementation (SRL-PFAC) to Characterize Hsp90-Cdc37 Complex and Identify Critical Residues in Protein/Protein Interactions. Journal of Biological Chemistry, 2010, 285, 21023-21036.	3.4	33
315	Design of Small-Molecule Smac Mimetics as IAP Antagonists. Current Topics in Microbiology and Immunology, 2010, 348, 89-113.	1.1	54
316	Analysis of the Binding of Mixed Lineage Leukemia 1 (MLL1) and Histone 3 Peptides to WD Repeat Domain 5 (WDR5) for the Design of Inhibitors of the MLL1â^WDR5 Interaction. Journal of Medicinal Chemistry, 2010, 53, 5179-5185.	6.4	61
317	Computational Analysis of Protein Hotspots. ACS Medicinal Chemistry Letters, 2010, 1, 125-129.	2.8	28
318	MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. European Journal of Cancer, 2010, 46, 1122-1131.	2.8	65
319	Structure-Based Design of Conformationally Constrained, Cell-Permeable STAT3 Inhibitors. ACS Medicinal Chemistry Letters, 2010, 1, 85-89.	2.8	80
320	Superparamagnetic Iron Oxide Nanotheranostics for Targeted Cancer Cell Imaging and pH-Dependent Intracellular Drug Release. Molecular Pharmaceutics, 2010, 7, 1974-1984.	4.6	124
321	Nonpeptidic and Potent Small-Molecule Inhibitors of cIAP-1/2 and XIAP Proteins. Journal of Medicinal Chemistry, 2010, 53, 6361-6367.	6.4	43
322	Proerectile Effects of Dopamine D ₂ -Like Agonists Are Mediated by the D ₃ Receptor in Rats and Mice. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 210-217.	2.5	41
323	TW-37, a Small-Molecule Inhibitor of Bcl-2, Inhibits Cell Growth and Induces Apoptosis in Pancreatic Cancer: Involvement of Notch-1 Signaling Pathway. Cancer Research, 2009, 69, 2757-2765.	0.9	78
324	Cardiac Glycosides Inhibit p53 Synthesis by a Mechanism Relieved by Src or MAPK Inhibition. Cancer Research, 2009, 69, 6556-6564.	0.9	105

#	Article	IF	CITATIONS
325	TW-37, a small-molecule inhibitor of Bcl-2, mediates S-phase cell cycle arrest and suppresses head and neck tumor angiogenesis. Molecular Cancer Therapeutics, 2009, 8, 893-903.	4.1	50
326	Efficient synthesis of phosphotyrosine building blocks using imidazolium trifluoroacetate. Tetrahedron Letters, 2009, 50, 6691-6692.	1.4	6
327	Design, synthesis, and evaluation of peptidomimetics containing Freidinger lactams as STAT3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1733-1736.	2.2	23
328	Design, Synthesis, and Evaluation of Potent, Nonpeptidic Mimetics of Second Mitochondria-Derived Activator of Caspases. Journal of Medicinal Chemistry, 2009, 52, 593-596.	6.4	40
329	Analysis of the Interaction of BCL9 with β-Catenin and Development of Fluorescence Polarization and Surface Plasmon Resonance Binding Assays for this Interaction. Biochemistry, 2009, 48, 9534-9541.	2.5	35
330	Importance of Ligand Reorganization Free Energy in Proteinâ^'Ligand Binding-Affinity Prediction. Journal of the American Chemical Society, 2009, 131, 13709-13721.	13.7	67
331	Small-Molecule Inhibitors of the MDM2-p53 Protein-Protein Interaction to Reactivate p53 Function: A Novel Approach for Cancer Therapy. Annual Review of Pharmacology and Toxicology, 2009, 49, 223-241.	9.4	547
332	An MDM2 antagonist (MI-319) restores p53 functions and increases the life span of orally treated follicular lymphoma bearing animals. Molecular Cancer, 2009, 8, 115.	19.2	71
333	Potent and Orally Active Small-Molecule Inhibitors of the MDM2â^'p53 Interaction. Journal of Medicinal Chemistry, 2009, 52, 7970-7973.	6.4	169
334	Dopamine D2/3 receptor partial agonists failed to produce antidepressantâ€like effects in the rat forced swim test. FASEB Journal, 2009, 23, 745.6.	0.5	0
335	Design and characterization of bivalent Smac-based peptides as antagonists of XIAP and development and validation of a fluorescence polarization assay for XIAP containing both BIR2 and BIR3 domains. Analytical Biochemistry, 2008, 374, 87-98.	2.4	45
336	Design of Small-Molecule Peptidic and Nonpeptidic Smac Mimetics. Accounts of Chemical Research, 2008, 41, 1264-1277.	15.6	144
337	â~'(â^')Gossypol promotes the apoptosis of bladder cancer cells in vitro. Pharmacological Research, 2008, 58, 323-331.	7.1	37
338	Preclinical studies of Apogossypolone: a new nonpeptidic pan small-molecule inhibitor of Bcl-2, Bcl-XL and Mcl-1 proteins in Follicular Small Cleaved Cell Lymphoma model. Molecular Cancer, 2008, 7, 20.	19.2	68
339	Structure-Based Design, Synthesis, Evaluation, and Crystallographic Studies of Conformationally Constrained Smac Mimetics as Inhibitors of the X-linked Inhibitor of Apoptosis Protein (XIAP). Journal of Medicinal Chemistry, 2008, 51, 7169-7180.	6.4	82
340	Design, Synthesis, and Evaluation of Tricyclic, Conformationally Constrained Small-Molecule Mimetics of Second Mitochondria-Derived Activator of Caspases. Journal of Medicinal Chemistry, 2008, 51, 7352-7355.	6.4	36
341	Targeting the MDM2-p53 Interaction for Cancer Therapy. Clinical Cancer Research, 2008, 14, 5318-5324.	7.0	302
342	Targeting of AKT1 enhances radiation toxicity of human tumor cells by inhibiting DNA-PKcs-dependent DNA double-strand break repair. Molecular Cancer Therapeutics, 2008, 7, 1772-1781	4.1	181

#	Article	IF	CITATIONS
343	Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia. Blood, 2008, 111, 1584-1593.	1.4	107
344	Design, Synthesis, and Evaluation of Potent and Selective Ligands for the Dopamine 3 (D ₃) Receptor with a Novel in Vivo Behavioral Profile. Journal of Medicinal Chemistry, 2008, 51, 5905-5908.	6.4	29
345	Acylpyrogallols as Inhibitors of Antiapoptotic Bcl-2 Proteins. Journal of Medicinal Chemistry, 2008, 51, 717-720.	6.4	77
346	Potent, Orally Bioavailable Diazabicyclic Small-Molecule Mimetics of Second Mitochondria-Derived Activator of Caspases. Journal of Medicinal Chemistry, 2008, 51, 8158-8162.	6.4	50
347	Interaction of a Cyclic, Bivalent Smac Mimetic with the X-Linked Inhibitor of Apoptosis Protein. Biochemistry, 2008, 47, 9811-9824.	2.5	52
348	A small molecule that disrupts Mdm2-p53 binding activates p53, induces apoptosis, and sensitizes lung cancer cells to chemotherapy. Cancer Biology and Therapy, 2008, 7, 845-852.	3.4	36
349	The pre-clinical development of MDM2 inhibitors in chronic lymphocytic leukemia uncovers a central role for p53 status in sensitivity to Mdm2 inhibitor-mediated apoptosis. Cell Cycle, 2008, 7, 971-979.	2.6	25
350	Anti-oxidant treatment enhances anti-tumor cytotoxicity of (-)-gossypol. Cancer Biology and Therapy, 2008, 7, 767-776.	3.4	17
351	Apogossypolone, a nonpeptidic small molecule inhibitor targeting Bcl-2 family proteins, effectively inhibits growth of diffuse large cell lymphoma cells in vitro and in vivo. Cancer Biology and Therapy, 2008, 7, 1418-1426.	3.4	40
352	Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3933-3938.	7.1	641
353	Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Molecular Cancer Therapeutics, 2008, 7, 1533-1542.	4.1	87
354	Combined Targeting of Epidermal Growth Factor Receptor, Signal Transducer and Activator of Transcription-3, and Bcl-X _L Enhances Antitumor Effects in Squamous Cell Carcinoma of the Head and Neck. Molecular Pharmacology, 2008, 73, 1632-1642.	2.3	64
355	Critical role of prostate apoptosis response-4 in determining the sensitivity of pancreatic cancer cells to small-molecule inhibitor-induced apoptosis. Molecular Cancer Therapeutics, 2008, 7, 2884-2893.	4.1	37
356	SM-164: A Novel, Bivalent Smac Mimetic That Induces Apoptosis and Tumor Regression by Concurrent Removal of the Blockade of cIAP-1/2 and XIAP. Cancer Research, 2008, 68, 9384-9393.	0.9	177
357	p27 degradation by an ellipticinium series of compound via ubiquitin-proteasome pathway. Cancer Biology and Therapy, 2007, 6, 360-366.	3.4	7
358	Preclinical Studies of TW-37, a New Nonpeptidic Small-Molecule Inhibitor of Bcl-2, in Diffuse Large Cell Lymphoma Xenograft Model Reveal Drug Action on Both Bcl-2 and Mcl-1. Clinical Cancer Research, 2007, 13, 2226-2235.	7.0	147
359	Bioinformatics-based discovery and characterization of an AKT-selective inhibitor 9-chloro-2-methylellipticinium acetate (CMEP) in breast cancer cells. Cancer Letters, 2007, 252, 244-258.	7.2	10
360	Small Molecule Inhibitors of the MDM2-p53 Interaction Discovered by Ensemble-Based Receptor Models. Journal of the American Chemical Society, 2007, 129, 12809-12814.	13.7	133

#	Article	IF	CITATIONS
361	Analysis of Ligand-Bound Water Molecules in High-Resolution Crystal Structures of Proteinâ^'Ligand Complexes. Journal of Chemical Information and Modeling, 2007, 47, 668-675.	5.4	156
362	Pyrogallol-Based Molecules as Potent Inhibitors of the Antiapoptotic Bcl-2 Proteins. Journal of Medicinal Chemistry, 2007, 50, 1723-1726.	6.4	44
363	Design, Synthesis, and Characterization of a Potent, Nonpeptide, Cell-Permeable, Bivalent Smac Mimetic That Concurrently Targets Both the BIR2 and BIR3 Domains in XIAP. Journal of the American Chemical Society, 2007, 129, 15279-15294.	13.7	191
364	Structure-Based Design of Flavonoid Compounds As a New Class of Small-Molecule Inhibitors of the Anti-apoptotic Bcl-2 Proteins. Journal of Medicinal Chemistry, 2007, 50, 3163-3166.	6.4	39
365	(α/β+α)-Peptide Antagonists of BH3 Domain/Bcl-xL Recognition:  Toward General Strategies for Foldamer-Based Inhibition of Proteinâ°'Protein Interactions. Journal of the American Chemical Society, 2007, 129, 139-154.	13.7	160
366	Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via â€~click chemistry'. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3939-3942.	2.2	54
367	Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP). Biochemical Pharmacology, 2007, 73, 15-24.	4.4	15
368	Yawning and hypothermia in rats: effects of dopamine D3 and D2 agonists and antagonists. Psychopharmacology, 2007, 193, 159-170.	3.1	119
369	A novel Bcl-2 small molecule inhibitor 4-(3-methoxy-phenylsulfannyl)-7-nitro-benzofurazan-3-oxide (MNB)-induced apoptosis in leukemia cells. Annals of Hematology, 2007, 86, 471-481.	1.8	14
370	Comprehensive Biomarker and Genomic Analysis Identifies p53 Status as the Major Determinant of Response to MDM2 Inhibitors in Chronic Lymphocytic Leukemia Blood, 2007, 110, 224-224.	1.4	0
371	Evaluation of TW-37, a pan Bcl-2 Proteins Small-Molecule Inhibitor, Against Spectrum of Human B-Cell Lines and Patient-Derived Samples Blood, 2007, 110, 4521-4521.	1.4	2
372	Design, Synthesis, and Evaluation of a Potent, Cell-Permeable, Conformationally Constrained Second Mitochondria Derived Activator of Caspase (Smac) Mimetic. Journal of Medicinal Chemistry, 2006, 49, 7916-7920.	6.4	101
373	Binding Free Energy Contributions of Interfacial Waters in HIV-1 Protease/Inhibitor Complexes. Journal of the American Chemical Society, 2006, 128, 11830-11839.	13.7	87
374	Structure-Based Design of Potent Small-Molecule Inhibitors of Anti-Apoptotic Bcl-2 Proteins. Journal of Medicinal Chemistry, 2006, 49, 6139-6142.	6.4	274
375	Discovery of a Nanomolar Inhibitor of the Human Murine Double Minute 2 (MDM2)â^'p53 Interaction through an Integrated, Virtual Database Screening Strategy. Journal of Medicinal Chemistry, 2006, 49, 3759-3762.	6.4	124
376	M-Score:Â A Knowledge-Based Potential Scoring Function Accounting for Protein Atom Mobility. Journal of Medicinal Chemistry, 2006, 49, 5903-5911.	6.4	63
377	(â^')-Gossypol Inhibits Growth and Promotes Apoptosis of Human Head and Neck Squamous Cell Carcinoma In Vivo. Neoplasia, 2006, 8, 163-172.	5.3	106
378	Computational Elucidation of the Structural Basis of Ligand Binding to the Dopamine 3 Receptor through Docking and Homology Modeling. Journal of Medicinal Chemistry, 2006, 49, 4470-4476.	6.4	21

#	Article	IF	CITATIONS
379	Structure-Based Design of Spiro-oxindoles as Potent, Specific Small-Molecule Inhibitors of the MDM2â^'p53 Interaction. Journal of Medicinal Chemistry, 2006, 49, 3432-3435.	6.4	647
380	Chapter 11 Recent Advances in Design of Small-Molecule Ligands to Target Protein–Protein Interactions. Annual Reports in Computational Chemistry, 2006, , 197-219.	1.7	1
381	Design of novel hexahydropyrazinoquinolines as potent and selective dopamine D3 receptor ligands with improved solubility. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 443-446.	2.2	23
382	Design, synthesis, and characterization of new embelin derivatives as potent inhibitors of X-linked inhibitor of apoptosis protein. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5805-5808.	2.2	67
383	Design and synthesis of a 1,5-diazabicyclo[6,3,0] dodecane amino acid derivative as a novel dipeptide reverse-turn mimetic. Tetrahedron Letters, 2006, 47, 4769-4770.	1.4	10
384	Discovery of a Novel Nonphosphorylated Pentapeptide Motif Displaying High Affinity for Grb2-SH2 Domain by the Utilization of 3â€~-Substituted Tyrosine Derivatives. Journal of Medicinal Chemistry, 2006, 49, 1585-1596.	6.4	47
385	A small molecule compound inhibits AKT pathway in ovarian cancer cell lines. Gynecologic Oncology, 2006, 100, 308-317.	1.4	36
386	A Novel BH3 Mimetic Reveals a Mitogen-Activated Protein Kinase–Dependent Mechanism of Melanoma Cell Death Controlled by p53 and Reactive Oxygen Species. Cancer Research, 2006, 66, 11348-11359.	0.9	138
387	Antiangiogenic Effect of TW37, a Small-Molecule Inhibitor of Bcl-2. Cancer Research, 2006, 66, 8698-8706.	0.9	79
388	Blockage of Epidermal Growth Factor Receptor-Phosphatidylinositol 3-Kinase-AKT Signaling Increases Radiosensitivity of K-RAS Mutated Human Tumor Cells In vitro by Affecting DNA Repair. Clinical Cancer Research, 2006, 12, 4119-4126.	7.0	196
389	Identification of the Fibroblast Growth Factor (FGF)-interacting Domain in a Secreted FGF-binding Protein by Phage Display. Journal of Biological Chemistry, 2006, 281, 1137-1144.	3.4	31
390	A Systematic Analysis of the Effect of Small-Molecule Binding on Protein Flexibility of the Ligand-Binding Sites. Journal of Medicinal Chemistry, 2005, 48, 5648-5650.	6.4	17
391	Nonpeptidic Small-Molecule Inhibitor of Bcl-2 and Bcl-XL, (???)-Gossypol, Enhances Biological Effect of Genistein Against BxPC-3 Human Pancreatic Cancer Cell Line. Pancreas, 2005, 31, 317-324.	1.1	56
392	Efficient synthesis of isoflavone analogues via a Suzuki coupling reaction. Tetrahedron Letters, 2005, 46, 3707-3709.	1.4	29
393	Synthesis of spirooxindoles via asymmetric 1,3-dipolar cycloaddition. Tetrahedron Letters, 2005, 46, 5949-5951.	1.4	59
394	Design and synthesis of a potent biotinylated Smac mimetic. Tetrahedron Letters, 2005, 46, 7015-7018.	1.4	4
395	Structure-based design, synthesis and biochemical testing of novel and potent Smac peptido-mimetics. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 793-797.	2.2	53
396	Design, synthesis and structure–activity relationship studies of hexahydropyrazinoquinolines as a novel class of potent and selective dopamine receptor 3 (D3) ligands. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 1701-1705.	2.2	21

#	Article	IF	CITATIONS
397	Identification of Novel Neuroprotective Agents Using Pharmacophore Modeling. Chemistry and Biodiversity, 2005, 2, 1564-1570.	2.1	6
398	An Extensive Test for 14 Scoring Functions Using the PDBbind Refined Set of 800 Protein?Ligand Complexes ChemInform, 2005, 36, no.	0.0	0
399	Design, Synthesis, and Evaluation of Hexahydrobenz[f]isoquinolines as a Novel Class of Dopamine 3 Receptor Ligands ChemInform, 2005, 36, no.	0.0	Ο
400	Design, Synthesis and Structure—Activity Relationship Studies of Hexahydropyrazinoquinolines as a Novel Class of Potent and Selective Dopamine Receptor 3 (D3) Ligands ChemInform, 2005, 36, no.	0.0	0
401	Efficient Synthesis of Isoflavone Analogues via a Suzuki Coupling Reaction ChemInform, 2005, 36, no.	0.0	0
402	Synthesis of Spirooxindoles via Asymmetric 1,3-Dipolar Cycloaddition ChemInform, 2005, 36, no.	0.0	0
403	A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4700-4705.	7.1	460
404	Bcl-2 Acts in a Proangiogenic Signaling Pathway through Nuclear Factor-κB and CXC Chemokines. Cancer Research, 2005, 65, 5063-5069.	0.9	101
405	The PDBbind Database:Â Methodologies and Updates. Journal of Medicinal Chemistry, 2005, 48, 4111-4119.	6.4	632
406	Chimeric (α)β + α)-Peptide Ligands for the BH3-Recognition Cleft of Bcl-xL:  Critical Role of the Molecular Scaffold in Protein Surface Recognition. Journal of the American Chemical Society, 2005, 127, 11966-11968.	13.7	166
407	Reversal of cisplatin resistance with a BH3 mimetic, (â^')-gossypol, in head and neck cancer cells: role of wild-type p53 and Bcl-xL. Molecular Cancer Therapeutics, 2005, 4, 1096-1104.	4.1	116
408	Enantiomerically Pure Hexahydropyrazinoquinolines as Potent and Selective Dopamine 3 Subtype Receptor Ligands. Journal of Medicinal Chemistry, 2005, 48, 3171-3181.	6.4	24
409	Structure-Based Design of Potent Non-Peptide MDM2 Inhibitors. Journal of the American Chemical Society, 2005, 127, 10130-10131.	13.7	608
410	CHMIS-C:Â A Comprehensive Herbal Medicine Information System for Cancer. Journal of Medicinal Chemistry, 2005, 48, 1481-1488.	6.4	52
411	Preclinical studies of a nonpeptidic small-molecule inhibitor of Bcl-2 and Bcl-X(L) [(-)-gossypol] against diffuse large cell lymphoma. Molecular Cancer Therapeutics, 2005, 4, 13-21.	4.1	67
412	(-)-Gossypol acts directly on the mitochondria to overcome Bcl-2- and Bcl-X(L)-mediated apoptosis resistance. Molecular Cancer Therapeutics, 2005, 4, 23-31.	4.1	59
413	(-)-Gossypol enhances response to radiation therapy and results in tumor regression of human prostate cancer. Molecular Cancer Therapeutics, 2005, 4, 197-205.	4.1	90
414	Breast Cancer Cells Can Evade Apoptosis-Mediated Selective Killing by a Novel Small Molecule Inhibitor of Bcl-2. Cancer Research, 2004, 64, 7947-7953.	0.9	85

#	Article	IF	CITATIONS
415	In vitro Effects of the BH3 Mimetic, (â^')-Gossypol, on Head and Neck Squamous Cell Carcinoma Cells. Clinical Cancer Research, 2004, 10, 7757-7763.	7.0	130
416	Web-Based Tools for Mining the NCI Databases for Anticancer Drug Discovery ChemInform, 2004, 35, no.	0.0	0
417	An efficient synthesis of optically pure (S)-2-functionalized 1,2,3,4-tetrahydroquinoline. Tetrahedron Letters, 2004, 45, 1027-1029.	1.4	6
418	Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Analytical Biochemistry, 2004, 332, 261-273.	2.4	479
419	Design, synthesis, and evaluation of hexahydrobenz[f]isoquinolines as a novel class of dopamine 3 receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 5813-5816.	2.2	7
420	Solution Conformations of Wild-Type and Mutated Bak BH3 Peptides via Dynamical Conformational Sampling and Implication to Their Binding to Antiapoptotic Bcl-2 Proteins. Journal of Physical Chemistry B, 2004, 108, 1467-1477.	2.6	6
421	Formation of a Novel Reversible Cytochrome P450 Spectral Intermediate:  Role of Threonine 303 in P450 2E1 Inactivation. Biochemistry, 2004, 43, 11942-11952.	2.5	18
422	Structure-Based Discovery of Nonpeptidic Small Organic Compounds To Block the T Cell Response to Myelin Basic Protein. Journal of Medicinal Chemistry, 2004, 47, 4989-4997.	6.4	34
423	Structure-Based Design of Potent, Conformationally Constrained Smac Mimetics. Journal of the American Chemical Society, 2004, 126, 16686-16687.	13.7	154
424	Structure-Based Design, Synthesis, and Evaluation of Conformationally Constrained Mimetics of the Second Mitochondria-Derived Activator of Caspase That Target the X-Linked Inhibitor of Apoptosis Protein/Caspase-9 Interaction Site. Journal of Medicinal Chemistry, 2004, 47, 4147-4150.	6.4	135
425	Discovery of Embelin as a Cell-Permeable, Small-Molecular Weight Inhibitor of XIAP through Structure-Based Computational Screening of a Traditional Herbal Medicine Three-Dimensional Structure Database. Journal of Medicinal Chemistry, 2004, 47, 2430-2440.	6.4	335
426	Web-Based Tools for Mining the NCI Databases for Anticancer Drug Discovery. Journal of Chemical Information and Computer Sciences, 2004, 44, 249-257.	2.8	28
427	An Extensive Test of 14 Scoring Functions Using the PDBbind Refined Set of 800 Proteinâ ''Ligand Complexes. Journal of Chemical Information and Computer Sciences, 2004, 44, 2114-2125.	2.8	234
428	The PDBbind Database:Â Collection of Binding Affinities for Proteinâ^'Ligand Complexes with Known Three-Dimensional Structures. Journal of Medicinal Chemistry, 2004, 47, 2977-2980.	6.4	787
429	Targeting Bcl-2 and Bcl-X with nonpeptidic small-molecule antagonists. Seminars in Oncology, 2003, 30, 133-142.	2.2	171
430	Molecular mechanism of gossypol-induced cell growth inhibition and cell death of HT-29 human colon carcinoma cells. Biochemical Pharmacology, 2003, 66, 93-103.	4.4	159
431	Pharmacophore-Based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 513-517.	2.2	78
432	2,3-Disubstituted quinuclidines as a novel class of dopamine transporter inhibitors. Bioorganic and Medicinal Chemistry, 2003, 11, 1123-1136.	3.0	8

#	Article	IF	CITATIONS
433	Molecular Modeling of the Three-Dimensional Structure of Dopamine 3 (D3) Subtype Receptor: Discovery of Novel and Potent D3 Ligands through a Hybrid Pharmacophore- and Structure-Based Database Searching Approach. Journal of Medicinal Chemistry, 2003, 46, 4377-4392.	6.4	138
434	Comparative Evaluation of 11 Scoring Functions for Molecular Docking. Journal of Medicinal Chemistry, 2003, 46, 2287-2303.	6.4	834
435	Structural Basis of RasGRP Binding to High-Affinity PKC Ligands. Journal of Medicinal Chemistry, 2002, 45, 853-860.	6.4	21
436	Competitive and Reversible Binding of a Guest Molecule to Its Host in Aqueous Solution through Molecular Dynamics Simulation: Benzyl Alcohol/β-Cyclodextrin System. Journal of Physical Chemistry B, 2002, 106, 4863-4872.	2.6	40
437	A Web-Based 3D-Database Pharmacophore Searching Tool for Drug Discovery. Journal of Chemical Information and Computer Sciences, 2002, 42, 192-198.	2.8	24
438	Molecular Modeling of the Interactions of Glutamate Carboxypeptidase II with Its Potent NAAC-Based Inhibitors. Journal of Medicinal Chemistry, 2002, 45, 4140-4152.	6.4	39
439	Direct Observation of the Folding and Unfolding of a β-Hairpin in Explicit Water through Computer Simulation. Journal of the American Chemical Society, 2002, 124, 5282-5283.	13.7	63
440	Discovery of substituted 3,4-Diphenyl-thiazoles as a novel class of monoamine transporter inhibitors through 3-D pharmacophore search using a new pharmacophore model derived from mazindol. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1775-1778.	2.2	15
441	Further development and validation of empirical scoring functions for structure-based binding affinity prediction. Journal of Computer-Aided Molecular Design, 2002, 16, 11-26.	2.9	1,012
442	Discovery of Substituted 3,4â€Diphenylâ€thiazoles as a Novel Class of Monoamine Transporter Inhibitors Through 3â€D Pharmacophore Search Using a New Pharmacophore Model Derived from Mazindol. ChemInform, 2002, 33, 252-252.	0.0	0
443	How Does Consensus Scoring Work for Virtual Library Screening? An Idealized Computer Experiment. Journal of Chemical Information and Computer Sciences, 2001, 41, 1422-1426.	2.8	279
444	Comparison of the NCI Open Database with Seven Large Chemical Structural Databases. Journal of Chemical Information and Computer Sciences, 2001, 41, 702-712.	2.8	202
445	Discovery of Small-Molecule Inhibitors of Bcl-2 through Structure-Based Computer Screening. Journal of Medicinal Chemistry, 2001, 44, 4313-4324.	6.4	325
446	Structural Basis of Binding of High-Affinity Ligands to Protein Kinase C:Â Prediction of the Binding Modes through a New Molecular Dynamics Method and Evaluation by Site-Directed Mutagenesis. Journal of Medicinal Chemistry, 2001, 44, 1690-1701.	6.4	48
447	Molecular Modeling Studies of the Akt PH Domain and Its Interaction with Phosphoinositides. Journal of Medicinal Chemistry, 2001, 44, 898-908.	6.4	50
448	Iridals Are a Novel Class of Ligands for Phorbol Ester Receptors with Modest Selectivity for the RasGRP Receptor Subfamilyâ€. Journal of Medicinal Chemistry, 2001, 44, 3872-3880.	6.4	42
449	Helix Folding of an Alanine-Based Peptide in Explicit Water. Journal of Physical Chemistry B, 2001, 105, 2227-2235.	2.6	51
450	Pharmacophore-Based discovery, synthesis, and biological evaluation of 4-phenyl-1-arylalkyl piperidines as dopamine transporter inhibitors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 495-500.	2.2	26

#	Article	IF	CITATIONS
451	Rational design, synthesis, and biological evaluation of rigid pyrrolidone analogues as potential inhibitors of prostate cancer cell growth. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 955-959.	2.2	33
452	Pharmacophore-based discovery of 3,4-disubstituted pyrrolidines as a novel class of monoamine transporter inhibitors. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1113-1118.	2.2	49
453	Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2515-2519.	2.2	83
454	Structure-Based Approach for the Discovery of Bis-benzamidines as Novel Inhibitors of Matriptase. Journal of Medicinal Chemistry, 2001, 44, 1349-1355.	6.4	80
455	Molecular Modeling, Structure–Activity Relationships and Functional Antagonism Studies of 4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-Methylphenyl Ketones as a Novel Class of Dopamine Transporter Inhibitors. Bioorganic and Medicinal Chemistry, 2001, 9, 1753-1764.	3.0	18
456	Phorbol Esters and Related Analogs Regulate the Subcellular Localization of β2-Chimaerin, a Non-protein Kinase C Phorbol Ester Receptor. Journal of Biological Chemistry, 2001, 276, 18303-18312.	3.4	62
457	Role of Hydrophobic Residues in the C1b Domain of Protein Kinase C l´ on Ligand and Phospholipid Interactions. Journal of Biological Chemistry, 2001, 276, 19580-19587.	3.4	43
458	Bicyclic Peptide Inhibitors of an Epithelial Cell-Derived Transmembrane Protease, Matriptase. , 2001, , 561-562.		0
459	Discovery of a Novel Dopamine Transporter Inhibitor, 4-Hydroxy-1-methyl-4-(4-methylphenyl)-3-piperidyl 4-Methylphenyl Ketone, as a Potential Cocaine Antagonist through 3D-Database Pharmacophore Searching. Molecular Modeling, Structureâ''Activity Relationships, and Behavioral Pharmacological Studies. Journal of Medicinal Chemistry. 2000. 43. 351-360.	6.4	68
460	Application of a Molecular Dynamics Simulation Method with a Generalized Effective Potential to the Flexible Molecular Docking Problems. Journal of Physical Chemistry B, 2000, 104, 354-359.	2.6	63
461	Folding Studies of a Linear Pentamer Peptide Adopting a Reverse Turn Conformation in Aqueous Solution through Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2000, 104, 8023-8034.	2.6	28
462	3-(Hydroxymethyl)-Bearing Phosphatidylinositol Ether Lipid Analogues and Carbonate Surrogates Block PI3-K, Akt, and Cancer Cell Growth. Journal of Medicinal Chemistry, 2000, 43, 3045-3051.	6.4	197
463	Enhancing systematic motion in molecular dynamics simulation. Journal of Chemical Physics, 1999, 110, 9401-9410.	3.0	61
464	Folding of a 16-residue helical peptide using molecular dynamics simulation with Tsallis effective potential. Journal of Chemical Physics, 1999, 111, 4359-4361.	3.0	38
465	β2-Chimaerin is a novel target for diacylglycerol: Binding properties and changes in subcellular localization mediated by ligand binding to its C1 domain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11854-11859.	7.1	91
466	Synthesis and protein kinase C binding activity of benzolactam-V7. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1371-1374.	2.2	27
467	Synthesis of 8-oxa analogues of norcocaine endowed with interesting cocaine-like activity. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1831-1836.	2.2	14
468	MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. , 1999, 13, 435-451.		140

MCDOCK: a Monte Carlo simulation approach to the molecular docking problem. , 1999, 13, 435-451. 468

#	Article	IF	CITATIONS
469	The Transition from a Pharmacophore-Guided Approach to a Receptor-Guided Approach in the Design of Potent Protein Kinase C Ligands. , 1999, 82, 251-261.		40
470	Probing the Binding of Indolactam-V to Protein Kinase C through Site-Directed Mutagenesis and Computational Docking Simulations. Journal of Medicinal Chemistry, 1999, 42, 3436-3446.	6.4	30
471	Recognition and interaction of small rings with the ricin A-chain binding site. , 1998, 31, 33-41.		31
472	Synthesis and anticholinesterase activity of huperzine A analogues containing phenol and catechol replacements for the pyridone ring. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1413-1418.	2.2	35
473	Conformationally constrained analogues of diacylglycerol (DAG). 14.1 Dissection of the roles of the sn-1 and sn-2 carbonyls in DAG mimetics by isopharma cophore replacement. Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1757-1762.	2.2	16
474	Conformationally constrained analogues of diacylglycerol (DAG). 15.1 The indispensable role of the sn-1 and sn-2 carbonyls in the binding of DAG-lactones to protein kinase C (PK-C). Bioorganic and Medicinal Chemistry Letters, 1998, 8, 3403-3408.	2.2	20
475	Structure-based design and synthesis of small molecule proteina€ tyrosine phosphatase 18 inhibitors 1A preliminary account of this work have been reported: Burke, T. R., Jr.; Yao, Z. J.; Ye, B.; Wang, S.; Zhang, Z. Y. Structure-based design of protein–tyrosine phosphatase inhibitors. Presented at the 213th National ACS Meeting, San Francisco, CA, April 13–17, 1997; MEDI-313. 1. Bioorganic and Medicinal	3.0	53
476	Chemistry, 1998, 6, 1799-1810. Structure-Based Design of a New Class of Protein Kinase C Modulators. Journal of the American Chemical Society, 1998, 120, 6629-6630.	13.7	40
477	Self-Guided Molecular Dynamics Simulation for Efficient Conformational Search. Journal of Physical Chemistry B, 1998, 102, 7238-7250.	2.6	108
478	Synthesis and Biology of the Conformationally Restricted ACPD Analogue, 2-Aminobicyclo[2.1.1]hexane-2,5-dicarboxylic Acid-I, a Potent mGluR Agonist. Journal of Medicinal Chemistry, 1998, 41, 1641-1650.	6.4	66
479	Characterization of C-10 Substituted Analogues of Huperzine A as Inhibitors of Cholinesterases. Advances in Behavioral Biology, 1998, , 601-605.	0.2	0
480	Nonphosphorylated Peptide Ligands for the Grb2 Src Homology 2 Domain. Journal of Biological Chemistry, 1997, 272, 29046-29052.	3.4	98
481	Hydrazide-Containing Inhibitors of HIV-1 Integraseâ€. Journal of Medicinal Chemistry, 1997, 40, 937-941.	6.4	106
482	Modeling, Chemistry, and Biology of the Benzolactam Analogues of Indolactam V (ILV). 2. Identification of the Binding Site of the Benzolactams in the CRD2 Activator-Binding Domain of PKCI´ and Discovery of an ILV Analogue of Improved Isozyme Selectivity. Journal of Medicinal Chemistry, 1997, 40, 1316-1326.	6.4	75
483	Coumarin-Based Inhibitors of HIV Integrase. Journal of Medicinal Chemistry, 1997, 40, 242-249.	6.4	280
484	Discovery of HIV-1 Integrase Inhibitors by Pharmacophore Searchingâ€. Journal of Medicinal Chemistry, 1997, 40, 930-936.	6.4	126
485	Depsides and Depsidones as Inhibitors of HIV-1 Integrase:  Discovery of Novel Inhibitors through 3D Database Searching. Journal of Medicinal Chemistry, 1997, 40, 942-951.	6.4	214
486	Synthesis, molecular modeling, and biology of the 1-benzyl derivative of APDC-an apparent mGluR6 selective ligand. Bioorganic and Medicinal Chemistry Letters, 1997, 7, 601-606.	2.2	55

#	Article	IF	CITATIONS
487	Antiretroviral Agents as Inhibitors of both Human Immunodeficiency Virus Type 1 Integrase and Protease. Journal of Medicinal Chemistry, 1996, 39, 2472-2481.	6.4	155
488	Discovery of Novel, Non-Peptide HIV-1 Protease Inhibitors by Pharmacophore Searching. Journal of Medicinal Chemistry, 1996, 39, 2047-2054.	6.4	133
489	Identification of a More Potent Analogue of the Naturally Occurring Alkaloid Huperzine A. Predictive Molecular Modeling of Its Interaction with AChE. Journal of the American Chemical Society, 1996, 118, 11357-11362.	13.7	99
490	Molecular Modeling and Site-Directed Mutagenesis Studies of a Phorbol Ester-Binding Site in Protein Kinase C. Journal of Medicinal Chemistry, 1996, 39, 2541-2553.	6.4	46
491	Conformationally Constrained Analogues of Diacylglycerol. 10. Ultrapotent Protein Kinase C Ligands Based on a Racemic 5-Disubstituted Tetrahydro-2-furanone Template1. Journal of Medicinal Chemistry, 1996, 39, 19-28.	6.4	44
492	Molecular Modeling in the Discovery of Drug Leads. Journal of Chemical Information and Computer Sciences, 1996, 36, 726-730.	2.8	12
493	Conformationally Constrained Analogues of Diacylglycerol. 12.1Ultrapotent Protein Kinase C Ligands Based on a Chiral 4,4-Disubstituted Heptono-1,4-lactone Template. Journal of Medicinal Chemistry, 1996, 39, 36-45.	6.4	35
494	Conformationally Constrained Analogues of Diacylglycerol. 11.1Ultrapotent Protein Kinase C Ligands Based on a Chiral 5-Disubstituted Tetrahydro-2-furanone Template. Journal of Medicinal Chemistry, 1996, 39, 29-35.	6.4	37
495	Synthesis and biology of the rigidified glutamate analogue, trans-2-carboxyazetidine-3-acetic acid (t-CAA). Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2559-2564.	2.2	27
496	Conformational changes of small molecules binding to proteins. Bioorganic and Medicinal Chemistry, 1995, 3, 411-428.	3.0	230
497	Residues in the Second Cysteine-rich Region of Protein Kinase C δ Relevant to Phorbol Ester Binding as Revealed by Site-directed Mutagenesis. Journal of Biological Chemistry, 1995, 270, 21852-21859.	3.4	143
498	Resiniferatoxinâ€Amide and Analogues as Ligands for Protein Kinase C and Vanilloid Receptors and Determination of Their Biological Activities as Vanilloids. Journal of Neurochemistry, 1995, 65, 301-308.	3.9	24
499	Conformationally constrained analogues of diacylglycerol. 6. Changes in PK-C binding affinity for 3-O-acyl-2-deoxy-L-ribonolactones bearing different acyl chains Bioorganic and Medicinal Chemistry Letters, 1994, 4, 355-360.	2.2	11
500	Prediction of geometries and interaction energies of complexes formed by small molecules using semiempirical and ab initio methods. Computational and Theoretical Chemistry, 1994, 309, 279-294.	1.5	13
501	Computer Automated log P Calculations Based on an Extended Group Contribution Approach. Journal of Chemical Information and Computer Sciences, 1994, 34, 752-781.	2.8	279
502	The Discovery of Novel, Structurally Diverse Protein Kinase C Agonists through Computer 3D-Database Pharmacophore Search. Molecular Modeling Studies. Journal of Medicinal Chemistry, 1994, 37, 4479-4489.	6.4	79
503	Graph Theory and Group Contributions in the Estimation of Boiling Points. Journal of Chemical Information and Computer Sciences, 1994, 34, 1242-1250.	2.8	20
504	Protein Kinase C. Modeling of the Binding Site and Prediction of Binding Constants. [Erratum to document cited in CA121:29778]. Journal of Medicinal Chemistry, 1994, 37, 4422-4422.	6.4	0

#	Article	lF	CITATIONS
505	National Cancer Institute Drug Information System 3D Database. Journal of Chemical Information and Computer Sciences, 1994, 34, 1219-1224.	2.8	141
506	Protein Kinase C. Modeling of the Binding Site and Prediction of Binding Constants. Journal of Medicinal Chemistry, 1994, 37, 1326-1338.	6.4	40
507	Applications of computers to toxicological research. Chemical Research in Toxicology, 1993, 6, 748-753.	3.3	14
508	Anti- Mycobacterium avium Activity of Quinolones: In Vitro Activities. Antimicrobial Agents and Chemotherapy, 1993, 37, 2766-2766.	3.2	0
509	Estimation of aqueous solubility of organic molecules by the group contribution approach. Application to the study of biodegradation. Journal of Chemical Information and Modeling, 1992, 32, 474-482.	5.4	147
510	A computer automated structure evaluation (CASE) approach to calculation of partition coefficient. Journal of Computational Chemistry, 1991, 12, 1025-1032.	3.3	78
511	Basic Principles and Practices of Computer-Aided Drug Design. , 0, , 259-278.		0