
Kang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6597825/publications.pdf Version: 2024-02-01

KANCLU

#	Article	IF	CITATIONS
1	Missing-linker metal-organic frameworks for oxygen evolution reaction. Nature Communications, 2019, 10, 5048.	12.8	422
2	Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution. Nature Communications, 2021, 12, 1369.	12.8	360
3	Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nature Communications, 2020, 11, 4173.	12.8	358
4	Interfacial Electronic Structure Modulation of NiTe Nanoarrays with NiS Nanodots Facilitates Electrocatalytic Oxygen Evolution. Advanced Materials, 2019, 31, e1900430.	21.0	298
5	Graphitic Carbon Nitride with Dopant Induced Charge Localization for Enhanced Photoreduction of CO ₂ to CH ₄ . Advanced Science, 2019, 6, 1900796.	11.2	251
6	Insights into the activity of single-atom Fe-N-C catalysts for oxygen reduction reaction. Nature Communications, 2022, 13, 2075.	12.8	197
7	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie - International Edition, 2021, 60, 16607-16614.	13.8	150
8	Accelerating CO ₂ Electroreduction to Multicarbon Products via Synergistic Electric–Thermal Field on Copper Nanoneedles. Journal of the American Chemical Society, 2022, 144, 3039-3049.	13.7	147
9	Tuning Charge Distribution of FeN ₄ via External N for Enhanced Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 6304-6315.	11.2	114
10	Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale, 2020, 12, 4903-4908.	5.6	107
11	Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction. Joule, 2019, 3, 1703-1718.	24.0	106
12	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie - International Edition, 2021, 60, 25241-25245.	13.8	104
13	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202113664.	13.8	102
14	Vertical Cu Nanoneedle Arrays Enhance the Local Electric Field Promoting C ₂ Hydrocarbons in the CO ₂ Electroreduction. Nano Letters, 2022, 22, 1963-1970.	9.1	95
15	Hybrids of PtRu Nanoclusters and Black Phosphorus Nanosheets for Highly Efficient Alkaline Hydrogen Evolution Reaction. ACS Catalysis, 2019, 9, 10870-10875.	11.2	86
16	Paired Ru‒O‒Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy, 2021, 82, 105767.	16.0	86
17	Hierarchical Nanorods of MoS ₂ /MoP Heterojunction for Efficient Electrocatalytic Hydrogen Evolution Reaction. Small, 2020, 16, e2002482.	10.0	85
18	Enhancing CO ₂ reduction by suppressing hydrogen evolution with polytetrafluoroethylene protected copper nanoneedles. Journal of Materials Chemistry A, 2020, 8, 15936-15941.	10.3	78

Kang Liu

#	Article	IF	CITATIONS
19	Activation of CO2 on graphitic carbon nitride supported single-atom cobalt sites. Chemical Engineering Journal, 2021, 415, 128982.	12.7	76
20	Graphitic carbon nitride based single-atom photocatalysts. Frontiers of Physics, 2020, 15, 1.	5.0	72
21	Co single-atoms on ultrathin N-doped porous carbon <i>via</i> a biomass complexation strategy for high performance metal–air batteries. Journal of Materials Chemistry A, 2020, 8, 2131-2139.	10.3	68
22	Untying thioether bond structures enabled by "voltage-scissors―for stable room temperature sodium–sulfur batteries. Nanoscale, 2019, 11, 5967-5973.	5.6	66
23	Machine Learning in Screening High Performance Electrocatalysts for CO ₂ Reduction. Small Methods, 2021, 5, e2100987.	8.6	60
24	Metallic MoO ₂ â€Modified Graphitic Carbon Nitride Boosting Photocatalytic CO ₂ Reduction via Schottky Junction. Solar Rrl, 2020, 4, 1900416.	5.8	59
25	Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products. Chinese Journal of Catalysis, 2021, 42, 1500-1508.	14.0	56
26	Hierarchical nanotubes constructed from CoSe2 nanorods with an oxygen-rich surface for an efficient oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 15073-15078.	10.3	47
27	Plasma-treatment induced H2O dissociation for the enhancement of photocatalytic CO2 reduction to CH4 over graphitic carbon nitride. Applied Surface Science, 2020, 508, 145173.	6.1	44
28	Hierarchical 2D yarn-ball like metal–organic framework NiFe(dobpdc) as bifunctional electrocatalyst for efficient overall electrocatalytic water splitting. Journal of Materials Chemistry A, 2020, 8, 22974-22982.	10.3	43
29	Tuning the electron structure enables the NiZn alloy for CO2 electroreduction to formate. Journal of Energy Chemistry, 2021, 63, 625-632.	12.9	38
30	CoS ₂ needle arrays induced a local pseudo-acidic environment for alkaline hydrogen evolution. Nanoscale, 2021, 13, 13604-13609.	5.6	37
31	Solution evaporation processed high quality perovskite films. Science Bulletin, 2018, 63, 1591-1596.	9.0	34
32	Chemical Identification of Catalytically Active Sites on Oxygenâ€doped Carbon Nanosheet to Decipher the High Activity for Electroâ€synthesis Hydrogen Peroxide. Angewandte Chemie, 2021, 133, 16743-16750.	2.0	34
33	Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environmental Chemistry Letters, 2022, 20, 243-262.	16.2	31
34	Recent advances in different-dimension electrocatalysts for carbon dioxide reduction. Journal of Colloid and Interface Science, 2019, 550, 17-47.	9.4	26
35	Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	24
36	Atomically Dispersed sâ€Block Magnesium Sites for Electroreduction of CO ₂ to CO. Angewandte Chemie, 2021, 133, 25445-25449.	2.0	22

Kang Liu

#	Article	IF	CITATIONS
37	Dual active sites fabricated through atomic layer deposition of TiO ₂ on MoS ₂ nanosheet arrays for highly efficient electroreduction of CO ₂ to ethanol. Journal of Materials Chemistry A, 2021, 9, 6790-6796.	10.3	22
38	Pseudo-copper Ni-Zn alloy catalysts for carbon dioxide reduction to C2 products. Frontiers of Physics, 2021, 16, 1.	5.0	19
39	CO2 reduction reaction pathways on single-atom Co sites: Impacts of local coordination environment. Chinese Journal of Catalysis, 2022, 43, 832-838.	14.0	18
40	B-Doped core–shell Fe@BC nanozymes: active site identification and bacterial inhibition. Chemical Communications, 2021, 57, 1623-1626.	4.1	17
41	Hierarchical TiO2 nanorods with a highly active surface for photocatalytic CO2 reduction. Journal of Central South University, 2019, 26, 1503-1509.	3.0	10
42	Vertical SrNbO ₂ N Nanorod Arrays for Solarâ€Driven Photoelectrochemical Water Splitting. Solar Rrl, 2021, 5, 2000448.	5.8	10
43	Turn the Trash into Treasure: Egg-White-Derived Single-Atom Electrocatalysts Boost Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6