
Ream Al-Hasani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6597749/publications.pdf Version: 2024-02-01

REAM AL-HASANI

#	Article	IF	CITATIONS
1	Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science, 2013, 340, 211-216.	12.6	1,010
2	Molecular Mechanisms of Opioid Receptor-dependent Signaling and Behavior. Anesthesiology, 2011, 115, 1363-1381.	2.5	741
3	CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron, 2015, 87, 605-620.	8.1	451
4	Wireless Optofluidic Systems for Programmable InÂVivo Pharmacology and Optogenetics. Cell, 2015, 162, 662-674.	28.9	417
5	Flexible Near-Field Wireless Optoelectronics as Subdermal Implants for Broad Applications in Optogenetics. Neuron, 2017, 93, 509-521.e3.	8.1	323
6	Distinct Subpopulations of Nucleus Accumbens Dynorphin Neurons Drive Aversion and Reward. Neuron, 2015, 87, 1063-1077.	8.1	276
7	Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics. Nature Protocols, 2013, 8, 2413-2428.	12.0	177
8	Pain and Poppies: The Good, the Bad, and the Ugly of Opioid Analgesics. Journal of Neuroscience, 2015, 35, 13879-13888.	3.6	175
9	Pain-Induced Negative Affect Is Mediated via Recruitment of The Nucleus Accumbens Kappa Opioid System. Neuron, 2019, 102, 564-573.e6.	8.1	139
10	Dynorphin Controls the Gain of an Amygdalar Anxiety Circuit. Cell Reports, 2016, 14, 2774-2783.	6.4	134
11	Spatiotemporal Control of Opioid Signaling and Behavior. Neuron, 2015, 86, 923-935.	8.1	131
12	Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8169-E8177.	7.1	111
13	Architectural Representation of Valence in the Limbic System. Neuropsychopharmacology, 2016, 41, 1697-1715.	5.4	110
14	Optodynamic simulation of \hat{l}^2 -adrenergic receptor signalling. Nature Communications, 2015, 6, 8480.	12.8	89
15	A Paranigral VTA Nociceptin Circuit that Constrains Motivation for Reward. Cell, 2019, 178, 653-671.e19.	28.9	76
16	Hippocampal Long-Term Potentiation Is Disrupted during Expression and Extinction But Is Restored after Reinstatement of Morphine Place Preference. Journal of Neuroscience, 2014, 34, 527-538.	3.6	65
17	Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nature Protocols, 2017, 12, 219-237.	12.0	61
18	An open-source device for measuring food intake and operant behavior in rodent home-cages. ELife, 2021, 10, .	6.0	56

REAM AL-HASANI

#	Article	IF	CITATIONS
19	In vivo detection of optically-evoked opioid peptide release. ELife, 2018, 7, .	6.0	53
20	Ventral tegmental area GABAergic inhibition of cholinergic interneurons in the ventral nucleus accumbens shell promotes reward reinforcement. Nature Neuroscience, 2021, 24, 1414-1428.	14.8	50
21	Locus Coeruleus Kappa-Opioid Receptors Modulate Reinstatement of Cocaine Place Preference Through a Noradrenergic Mechanism. Neuropsychopharmacology, 2013, 38, 2484-2497.	5.4	49
22	Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum. Nature Communications, 2018, 9, 2710.	12.8	47
23	Exposure to chronic mild stress prevents kappa opioid-mediated reinstatement of cocaine and nicotine place preference. Frontiers in Pharmacology, 2013, 4, 96.	3.5	40
24	Chemogenetic and Optogenetic Activation of Gαs Signaling in the Basolateral Amygdala Induces Acute and Social Anxiety-Like States. Neuropsychopharmacology, 2016, 41, 2011-2023.	5.4	38
25	Mouse strain differences in locomotor, sensitisation and rewarding effect of heroin; association with alterations in MOPâ \in activation and dopamine transporter binding. European Journal of Neuroscience, 2010, 31, 742-753.	2.6	32
26	Dynorphin and its role in alcohol use disorder. Brain Research, 2020, 1735, 146742.	2.2	27
27	Genetic deletion of the adenosine A2A receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain. Neuropharmacology, 2013, 71, 228-236.	4.1	15
28	Loss of CELF6 RNA binding protein impairs cocaine conditioned place preference and contextual fear conditioning. Genes, Brain and Behavior, 2019, 18, e12593.	2.2	15
29	Ontogenetic Oxycodone Exposure Affects Early Life Communicative Behaviors, Sensorimotor Reflexes, and Weight Trajectory in Mice. Frontiers in Behavioral Neuroscience, 2021, 15, 615798.	2.0	10
30	Pain, Motivation, Migraine, and the Microbiome: New Frontiers for Opioid Systems and Disease. Molecular Pharmacology, 2020, 98, 433-444.	2.3	9
31	Challenges and new opportunities for detecting endogenous opioid peptides in reward. Addiction Neuroscience, 2022, 2, 100016.	1.3	6
32	Pain, negative affective states and opioid-based analgesics: Safer pain therapies to dampen addiction. International Review of Neurobiology, 2021, 157, 31-68.	2.0	2
33	Paranigral VTA Nociceptin Neurons Constrain Motivation for Reward. Biological Psychiatry, 2020, 87, S80-S81.	1.3	0
34	Optogenetic and pharmacological activation of betaâ€adrenergic receptor signaling in the basolateral amygdala promotes anxiety and aversive behavior. FASEB Journal, 2013, 27, 1099.3.	0.5	0
35	Comorbidities Are Complex: The Dynorphin/Kappa Opioid Receptor System in a Preclinical Model of Stress and Alcohol. Biological Psychiatry, 2022, 91, 1000-1002.	1.3	0