Cheng-Liang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6596302/publications.pdf

Version: 2024-02-01

105 papers 4,164 citations

94433 37 h-index 62 g-index

107 all docs

107 docs citations

107 times ranked

4015 citing authors

#	Article	IF	CITATIONS
1	New Thiophene-Linked Conjugated Poly(azomethine)s:Â Theoretical Electronic Structure, Synthesis, and Properties. Macromolecules, 2005, 38, 1958-1966.	4.8	208
2	Polymeric charge storage electrets for non-volatile organic field effect transistor memory devices. Polymer Chemistry, 2015, 6, 341-352.	3.9	178
3	Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications. Polymer, 2006, 47, 527-538.	3.8	173
4	Conjugated rod–coil block copolymers: Synthesis, morphology, photophysical properties, and stimuli-responsive applications. Progress in Polymer Science, 2011, 36, 603-637.	24.7	162
5	Donor–acceptor polymers for advanced memory device applications. Polymer Chemistry, 2011, 2, 2169.	3.9	156
6	High Performance Volatile Polymeric Memory Devices Based on Novel Triphenylamine-based Polyimides Containing Mono- or Dual-Mediated Phenoxy Linkages. Macromolecules, 2010, 43, 1236-1244.	4.8	153
7	Synthesis and Memory Device Characteristics of New Sulfur Donor Containing Polyimides. Macromolecules, 2009, 42, 4456-4463.	4.8	148
8	Flexible Nonvolatile Transistor Memory Devices Based on Oneâ€Dimensional Electrospun P3HT:Au Hybrid Nanofibers. Advanced Functional Materials, 2013, 23, 4960-4968.	14.9	119
9	Synthesis, Morphology, and Properties of Poly(3â€hexylthiophene)â€ <i>block</i> â€Poly(vinylphenyl) Tj ETQq1 1 Advanced Functional Materials, 2010, 20, 3012-3024.	0.784314 14.9	rgBT /Overlo
10	Singleâ€Crystal C ₆₀ Needle/CuPc Nanoparticle Double Floatingâ€Gate for Lowâ€Voltage Organic Transistors Based Nonâ€Volatile Memory Devices. Advanced Materials, 2015, 27, 27-33.	21.0	111
11	New Donorâ^Acceptor Random Copolymers with Pendent Triphenylamine and 1,3,4-Oxadiazole for High-Performance Memory Device Applications. Macromolecules, 2011, 44, 2604-2612.	4.8	88
12	Electronic structure and properties of alternating donor–acceptor conjugated copolymers: 3,4-Ethylenedioxythiophene (EDOT) copolymers and model compounds. Polymer, 2006, 47, 699-708.	3.8	87
13	Supramolecular block copolymers: graphene oxide composites for memory device applications. Chemical Communications, 2012, 48, 383-385.	4.1	84
14	New Dibenzothiophene-Containing Donorâ Acceptor Polyimides for High-Performance Memory Device Applications. Journal of Physical Chemistry C, 2011, 115, 5930-5939.	3.1	83
15	New random copolymers with pendant carbazole donor and 1,3,4-oxadiazole acceptor for high performance memory device applications. Journal of Materials Chemistry, 2011, 21, 4778.	6.7	79
16	A poly(fluorene-thiophene) donor with a tethered phenanthro[9,10-d]imidazole acceptor for flexible nonvolatile flash resistive memory devices. Chemical Communications, 2012, 48, 9135.	4.1	75
17	Flexible polymer memory devices derived from triphenylamine–pyrene containing donor–acceptor polyimides. Journal of Materials Chemistry, 2012, 22, 20754.	6.7	70

Multilevel nonvolatile transistor memories using a star-shaped poly((4-diphenylamino)benzyl) Tj ETQq0 0 0 rgBT /Oyerlock 10,Tf 50 62 T

#	Article	IF	CITATIONS
19	New Didecyloxyphenyleneâ^'Acceptor Alternating Conjugated Copolymers: Synthesis, Properties, and Optoelectronic Device Applications. Macromolecules, 2008, 41, 6952-6959.	4.8	69
20	Tuning the Electrical Memory Characteristics from Volatile to Nonvolatile by Perylene Imide Composition in Random Copolyimides. Macromolecules, 2012, 45, 4556-4563.	4.8	69
21	Theoretical and Experimental Characterization of Small Band Gap Poly(3,4-ethylenedioxythiophene) Tj ETQq1	l 0.784314 4.8	rgBT/Overlo
22	High Performance Transparent Transistor Memory Devices Using Nano-Floating Gate of Polymer/ZnO Nanocomposites. Scientific Reports, 2016, 6, 20129.	3.3	68
23	Non-volatile Memory Devices Based on Polystyrene Derivatives with Electron-Donating Oligofluorene Pendent Moieties. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1974-1979.	8.0	62
24	Solutionâ€Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambientâ€Stable nâ€Channel Organic Field Effect Transistors. Advanced Functional Materials, 2017, 27, 1606761.	14.9	62
25	Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Sprayâ€Coating of Photoactive Layers. ChemSusChem, 2017, 10, 1405-1412.	6.8	62
26	Tunable electrical memory characteristics by the morphology of self-assembled block copolymers:PCBM nanocomposite films. Soft Matter, 2012, 8, 526-535.	2.7	60
27	Conjugated Fluorene Based Rod–Coil Block Copolymers and Their PCBM Composites for Resistive Memory Switching Devices. ACS Applied Materials & Samp; Interfaces, 2011, 3, 4504-4511.	8.0	56
28	Tunable Electrical Memory Characteristics Using Polyimide:Polycyclic Aromatic Compound Blends on Flexible Substrates. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4921-4929.	8.0	50
29	Small band gap conjugated polymers based on thiophene–thienopyrazine copolymers. Journal of Polymer Science Part A, 2007, 45, 5872-5883.	2.3	48
30	Theoretical analysis on the geometries and electronic structures of coplanar conjugated poly(azomethine)s. Polymer, 2005, 46, 4950-4957.	3.8	47
31	Nonvolatile Organic Field-Effect Transistors Memory Devices Using Supramolecular Block Copolymer/Functional Small Molecule Nanocomposite Electret. ACS Applied Materials & Samp; Interfaces, 2015, 7, 5663-5673.	8.0	47
32	Novel Organic Phototransistor-Based Nonvolatile Memory Integrated with UV-Sensing/Green-Emissive Aggregation Enhanced Emission (AEE)-Active Aromatic Polyamide Electret Layer. ACS Applied Materials & Emp; Interfaces, 2018, 10, 18281-18288.	8.0	47
33	Intramolecular Locked Dithioalkylbithiopheneâ€Based Semiconductors for Highâ€Performance Organic Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702414.	21.0	45
34	Scalable Ultrasonic Spray-Processing Technique for Manufacturing Large-Area CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 38042-38050.	8.0	43
35	Full color lightâ€emitting electrospun nanofibers prepared from PFO/MEHâ€PPV/PMMA ternary blends. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 463-470.	2.1	42
36	A Supramolecular Approach on Using Poly(fluorenylstyrene)â€ <i>block</i> â€poly(2â€vinylpyridine):PCBM Composite Thin Films for Nonâ€Volatile Memory Device Applications. Macromolecular Rapid Communications, 2011, 32, 528-533.	3.9	40

#	Article	IF	CITATIONS
37	Donor–acceptor conjugated polymers of arylene vinylene with pendent phenanthro[9,10-d]imidazole for high-performance flexible resistor-type memory applications. Polymer Chemistry, 2013, 4, 5261.	3.9	40
38	Solution Processable Pseudo <i>n</i> -Thienoacenes via Intramolecular S···S Lock for High Performance Organic Field Effect Transistors. Chemistry of Materials, 2020, 32, 1422-1429.	6.7	38
39	Zinc chlorophyll aggregates as hole transporters for biocompatible, natural-photosynthesis-inspired solar cells. Journal of Power Sources, 2015, 297, 519-524.	7.8	34
40	Ultrasonic Spray-Coated Mixed Cation Perovskite Films and Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 14217-14224.	6.7	32
41	Fluorene-Based Conjugated Poly(azomethine)s: Synthesis, Photophysical Properties, and Theoretical Electronic Structures. Macromolecular Chemistry and Physics, 2005, 206, 2212-2222.	2.2	31
42	Poly(3-hexylthiophene)–graphene composite-based aligned nanofibers for high-performance field effect transistors. Journal of Materials Chemistry C, 2015, 3, 4290-4296.	5.5	31
43	Semiconducting small molecule/polymer blends for organic transistors. Polymer, 2020, 191, 122208.	3.8	31
44	Nonvolatile organic field effect transistor memory devices using one-dimensional aligned electrospun nanofiber channels of semiconducting polymers. Journal of Materials Chemistry C, 2013, 1, 5336.	5.5	30
45	Synthesis and characterization of solution-processable diketopyrrolopyrrole (DPP) and tetrathienothiophene (TTA)-based small molecules for organic thin film transistors and organic photovoltaic cells. Dyes and Pigments, 2016, 133, 280-291.	3.7	28
46	High performance solution-processable tetrathienoacene (TTAR) based small molecules for organic field effect transistors (OFETs). Chemical Communications, 2017, 53, 5898-5901.	4.1	28
47	High throughput two-step ultrasonic spray deposited CH3NH3PbI3 thin film layer for solar cell application. Journal of Power Sources, 2018, 390, 270-277.	7.8	28
48	Solutionâ€Processed Highâ€Performance Tetrathienothiopheneâ€Based Small Molecular Blends for Ambipolar Charge Transport. Advanced Functional Materials, 2018, 28, 1801025.	14.9	28
49	Thienoisoindigo (TII)â€Based Quinoidal Small Molecules for Highâ€Performance nâ€Type Organic Field Effect Transistors. Advanced Science, 2021, 8, 2002930.	11.2	28
50	Solution-Processable Quinoidal Dithioalkylterthiophene-Based Small Molecules Pseudo-Pentathienoacenes <i>via</i> an Intramolecular S···S Lock for High-Performance n-Type Organic Field-Effect Transistors. ACS Applied Materials & Interfaces, 2020, 12, 25081-25091.	8.0	26
51	UV-sensing organic phototransistor memory devices with a doped organic polymer electret composed of triphenylamine-based aggregation-induced emission luminogens. Journal of Materials Chemistry C, 2019, 7, 11014-11021.	5.5	24
52	Nonvolatile Organic Thin Film Transistor Memory Devices Based on Hybrid Nanocomposites of Semiconducting Polymers: Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2013, 5, 13180-13187.	8.0	23
53	Spray-coating semiconducting conjugated polymers for organic thin film transistor applications. RSC Advances, 2014, 4, 30145.	3.6	23
54	Heteroalkylâ€Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Advanced Functional Materials, 2022, 32, .	14.9	22

#	Article	lF	Citations
55	Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating. Scientific Reports, 2017, 7, 11982.	3.3	21
56	Influences of Conjugation Length on Organic Field-Effect Transistor Performances and Thin Film Structures of Diketopyrrolopyrrole-Oligomers. ACS Applied Materials & Diterfaces, 2018, 10, 8869-8876.	8.0	21
57	A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS Nano, 2021, 15, 727-738.	14.6	21
58	Controlled Synthesis of Poly[(3-alkylthio)thiophene]s and Their Application to Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31898-31909.	8.0	21
59	Progress in Spray Coated Perovskite Films for Solar Cell Applications. Solar Rrl, 2022, 6, 2101035.	5.8	21
60	Linkage effects of triphenylamine-based aromatic polymer electrets on electrical memory performance. Polymer, 2018, 148, 382-389.	3.8	20
61	Pentafluorosulfanylated polymers as electrets in nonvolatile organic field-effect transistor memory devices. Journal of Materials Chemistry C, 2019, 7, 7865-7871.	5.5	19
62	Tunable dielectric constant of polyimide–barium titanate nanocomposite materials as the gate dielectrics for organic thin film transistor applications. RSC Advances, 2014, 4, 62132-62139.	3.6	17
63	Spray deposition of NiOx hole transport layer and perovskite photoabsorber in fabrication of photovoltaic mini-module. Journal of Power Sources, 2021, 491, 229586.	7.8	16
64	One-Step Spray-Coated All-Inorganic CsPbI ₂ Br Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 5466-5474.	5.1	16
65	A sol–gel titanium–silicon oxide/organic hybrid dielectric for low-voltage organic thin film transistors. Journal of Materials Chemistry C, 2015, 3, 968-972.	5.5	15
66	Random styrenic copolymers with pendant pyrene moieties: Synthesis and applications in organic fieldâ€effect transistor memory. Journal of Polymer Science Part A, 2016, 54, 910-917.	2.3	15
67	Synthesis of Novel π-Conjugated Rod-Rod-Rod Triblock Copolymers Containing Poly(3-hexylthiophene) and Polyacetylene Segments by Combination of Quasi-Living GRIM and Living Anionic Polymerization. Polymers, 2011, 3, 236-251.	4.5	14
68	Controllable electrical performance of spray-coated semiconducting small molecule/insulating polymer blend thin film for organic field effect transistors application. Reactive and Functional Polymers, 2016, 108, 130-136.	4.1	14
69	Solution-processable end-functionalized tetrathienoacene semiconductors: Synthesis, characterization and organic field effect transistors applications. Dyes and Pigments, 2017, 145, 584-590.	3.7	14
70	Solutionâ€Processable Multifused Thiophene Small Molecules and Conjugated Polymer Semiconducting Blend for Organic Field Effect Transistor Application. Advanced Materials Technologies, 2021, 6, 2001028.	5.8	14
71	Chlorophyll derivatives/MXene hybrids for photocatalytic hydrogen evolution: Dependence of performance on the central coordinating metals. International Journal of Hydrogen Energy, 2022, 47, 3824-3833.	7.1	14
72	Multiâ€Channel Pumped Ultrasonic Sprayâ€Coating for Highâ€Throughput and Scalable Mixed Halide Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001509.	3.7	13

#	Article	IF	CITATIONS
73	Quinoidal thioalkyl-substituted bithiophene small molecule semiconductors for n-type organic field effect transistors. Journal of Materials Chemistry C, 2020, 8, 15450-15458.	5.5	12
74	Nano–Micro Dimensional Structures of Fiberâ€Shaped Luminous Halide Perovskite Composites for Photonic and Optoelectronic Applications. Macromolecular Rapid Communications, 2020, 41, e2000157.	3.9	12
75	Spray deposition of vinyl tris(2-methoxyethoxy) silane-doped Ti3C2T MXene hole transporting layer for planar perovskite solar cells. Journal of Alloys and Compounds, 2022, 900, 163372.	5 . 5	12
76	Dicyclopentadithienothiophene (DCDTT)-based organic semiconductor assisted grain boundary passivation for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11254-11267.	10.3	11
77	Conjugated Donorâ€Acceptorâ€Acceptor (Dâ€Aâ€A) Molecule for Organic Nonvolatile Resistor Memory. Chemistry - an Asian Journal, 2014, 9, 3403-3407.	3.3	10
78	Sequential Ultrasonic Sprayâ€Coating Planar Three Layers for 1 cm ² Active Area Inverted Perovskite Solar Cells. Energy Technology, 2020, 8, 2000216.	3.8	10
79	Synergetic Effect on Enhanced Photovoltaic Performance of Spray-Coated Perovskite Solar Cells Enabled by Additive Doping and Antisolvent Additive Spraying Treatment. ACS Applied Energy Materials, 2022, 5, 4149-4158.	5.1	10
80	A 1D Electrospun Nanofiber Channel for Organic Fieldâ€Effect Transistors Using a Donor/Acceptor Planar Heterojunction Architecture. Advanced Materials Interfaces, 2015, 2, 1500054.	3.7	9
81	Low-voltage-driven organic phototransistors based on a solution-processed organic semiconductor channel and high k hybrid gate dielectric. Journal of Materials Chemistry C, 2017, 5, 9838-9842.	5 . 5	9
82	Naphthobisthiadiazole-Based π-Conjugated Polymers for Nonfullerene Solar Cells: Suppressing Intermolecular Interaction Improves Photovoltaic Performance. ACS Applied Materials & Discrete amp; Interfaces, 2022, 14, 14400-14409.	8.0	9
83	Morphology and Photophysical Properties of DBâ€PPV/PMMA Luminescent Electrospun Fibers. Macromolecular Chemistry and Physics, 2009, 210, 918-925.	2.2	8
84	Surface Energyâ€Mediated Selfâ€Patterning for High Performance Sprayâ€Deposited Organic Field Effect Transistors. Advanced Materials Interfaces, 2016, 3, 1500714.	3.7	8
85	Fully Solutionâ€Processed Lowâ€Voltage Driven Transparent Oxide Thin Film Transistors. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800192.	1.8	8
86	Solution Processable Pentafluorophenyl Endâ€Capped Dithienothiophene Organic Semiconductors for Holeâ€Transporting Organic Field Effect Transistors. Advanced Electronic Materials, 2022, 8, 2100648.	5.1	7
87	High hole mobility from thiophene-thienopyrazine copolymer based thin film transistors. Journal of Polymer Research, 2009, 16, 239-244.	2.4	6
88	Organic/inorganic F8T2/GaN light emitting heterojunction. Organic Electronics, 2017, 49, 64-68.	2.6	6
89	Atom-economical Synthesis and Characterization of Poly(oxindolidene thienylene vinylene) Based on Aldol Polycondensation Reaction. Catalysts, 2020, 10, 364.	3 . 5	5
90	Photoelectric effect of hybrid ultraviolet-sensitized phototransistors from an n-type organic semiconductor and an all-inorganic perovskite quantum dot photosensitizer. Nanoscale, 2021, 13, 20498-20507.	5.6	5

#	Article	IF	CITATIONS
91	Tunable Photoelectric Properties of nâ€Type Semiconducting Polymer:Small Molecule Blends for Red Light Sensing Phototransistors. Advanced Optical Materials, 2022, 10, .	7.3	5
92	Synthesis and Properties of New Small Band Gap Conjugated Polymers: Methine Bridged Poly(3,4-ethylenedioxypyrrole). Polymer Journal, 2009, 41, 363-369.	2.7	4
93	Organic Fieldâ€Effect Transistors: Singleâ€Crystal C ₆₀ Needle/CuPc Nanoparticle Double Floatingâ€Gate for Lowâ€Voltage Organic Transistors Based Nonâ€Volatile Memory Devices (Adv. Mater.) Tj ETC	Qq ½ 1. 0 .78	34344 rgBT /(
94	Conjugated fluorene-moiety-containing pendant polymers for the dispersion of single-wall carbon nanotubes: polymer wrapping abilities and electrical properties. Polymer Journal, 2016, 48, 421-429.	2.7	4
95	Efficiency improvement of inverted perovskite solar cells enabled by PTAA/MoS ₂ double hole transporters. Nanotechnology, 2022, 33, 335202.	2.6	4
96	Methyl-Branched Side Chains on Polythiophene Suppress Chain Mobility and Crystallization to Enhance Photovoltaic Performance. Macromolecules, 2021, 54, 3689-3699.	4.8	3
97	Surface PEGylation via Ultrasonic Spray Deposition for the Biofouling Mitigation of Biomedical Interfaces. ACS Applied Bio Materials, 2022, 5, 225-234.	4.6	2
98	Flexible Transistors: Flexible Nonvolatile Transistor Memory Devices Based on Oneâ€Dimensional Electrospun P3HT:Au Hybrid Nanofibers (Adv. Funct. Mater. 39/2013). Advanced Functional Materials, 2013, 23, 4874-4874.	14.9	1
99	Nonvolatile organic transistor memory devices based on nanostructured polymeric materials. , 2014, , .		1
100	Facile Spray Deposition of Photocatalytic ZnO/Cu–Inâ€Znâ€S Heterostructured Composite Thin Film. ChemistrySelect, 2016, 1, 4979-4986.	1.5	1
101	Ultrasonic Sprayâ€Coatings: Multiâ€Channel Pumped Ultrasonic Sprayâ€Coating for Highâ€Throughput and Scalable Mixed Halide Perovskite Solar Cells (Adv. Mater. Interfaces 5/2021). Advanced Materials Interfaces, 2021, 8, 2170023.	3.7	1
102	Macromol. Chem. Phys. 11/2009. Macromolecular Chemistry and Physics, 2009, 210, NA-NA.	2.2	0
103	Organic Semiconductors: Surface Energy-Mediated Self-Patterning for High Performance Spray-Deposited Organic Field Effect Transistors (Adv. Mater. Interfaces 11/2016). Advanced Materials Interfaces, 2016, 3, .	3.7	0
104	CHAPTER 6. Polymer Composites for Electrical Memory Device Applications. RSC Polymer Chemistry Series, 2015, , 206-232.	0.2	0
105	CHAPTER 7. Conjugated Polymers for Memory Device Applications. RSC Polymer Chemistry Series, 2015, , 233-255.	0.2	0