
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6596216/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Untargeted MS-Based Metabolomics Analysis of the Responses to Drought Stress in Quercus ilex L. Leaf Seedlings and the Identification of Putative Compounds Related to Tolerance. Forests, 2022, 13, 551.	0.9	13
2	Population genetic structure and dispersal of <i>Pinus occidentalis</i> in the Dominican Republic by chloroplastic SSR, with implications for its conservation, management, and reforestation. Canadian Journal of Forest Research, 2022, 52, 553-560.	0.8	0
3	Phytochemical composition and variability in Quercus ilex acorn morphotypes as determined by NIRS and MS-based approaches. Food Chemistry, 2021, 338, 127803.	4.2	25
4	Plant Proteomic Research 3.0: Challenges and Perspectives. International Journal of Molecular Sciences, 2021, 22, 766.	1.8	7
5	Proteomic Insights of Date Palm Embryogenesis and Responses to Environmental Stress. Compendium of Plant Genomes, 2021, , 85-99.	0.3	1
6	Proteomics and plant biology: contributions to date and a look towards the next decade. Expert Review of Proteomics, 2021, 18, 93-103.	1.3	14
7	GeLC-Orbitrap/MS and 2-DE-MALDI-TOF/TOF comparative proteomics analysis of seed cotyledons from the non-orthodox Quercus ilex tree species. Journal of Proteomics, 2021, 233, 104087.	1.2	11
8	Application and optimization of label-free shotgun approaches in the study of Quercus ilex. Journal of Proteomics, 2021, 233, 104082.	1.2	6
9	Proteomics Data Analysis for the Identification of Proteins and Derived Proteotypic Peptides of Potential Use as Putative Drought Tolerance Markers for Quercus ilex. International Journal of Molecular Sciences, 2021, 22, 3191.	1.8	13
10	Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. Forests, 2021, 12, 364.	0.9	18
11	Interspecific Variation between the American Quercus virginiana and Mediterranean Quercus Species in Terms of Seed Nutritional Composition, Phytochemical Content, and Antioxidant Activity. Molecules, 2021, 26, 2351.	1.7	2
12	Combining P and Zn fertilization to enhance yield and grain quality in maize grown on Mediterranean soils. Scientific Reports, 2021, 11, 7427.	1.6	12
13	Why Consumers Prefer Green Friariello Pepper: Changes in the Protein and Metabolite Profiles Along the Ripening. Frontiers in Plant Science, 2021, 12, 668562.	1.7	5
14	Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined Phytophthora cinnamomi and Drought Stresses. Frontiers in Plant Science, 2021, 12, 722802.	1.7	23
15	Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations. Forests, 2020, 11, 707.	0.9	19
16	<i>Quercus ilex</i> pollen allergen, Que i 1, responsible for pollen food allergy syndrome caused by fruits in Spanish allergic patients. Clinical and Experimental Allergy, 2020, 50, 815-823.	1.4	20
17	Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Quercus ilex Species Based on Protein Signatures as Revealed by 2-DE Coupled to MALDI-TOF/TOF Proteomics Strategy. International Journal of Molecular Sciences, 2020, 21, 4870.	1.8	15
18	What Is New in (Plant) Proteomics Methods and Protocols: The 2015–2019 Quinquennium. Methods in Molecular Biology, 2020, 2139, 1-10.	0.4	7

JESUS V JORRIN NOVO

#	Article	IF	CITATIONS
19	A Pipeline for Metabolic Pathway Reconstruction in Plant Orphan Species. Methods in Molecular Biology, 2020, 2139, 367-380.	0.4	0
20	A multi-omics analysis of the grapevine pathogen Lasiodiplodia theobromae reveals that temperature affects the expression of virulence- and pathogenicity-related genes. Scientific Reports, 2019, 9, 13144.	1.6	47
21	Ion Torrent and Illumina, two complementary RNA-seq platforms for constructing the holm oak (Quercus ilex) transcriptome. PLoS ONE, 2019, 14, e0210356.	1.1	28
22	Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. Progress in Botany Fortschritte Der Botanik, 2019, , 77-101.	0.1	6
23	Proteomic Analysis and Functional Validation of a Brassica oleracea Endochitinase Involved in Resistance to Xanthomonas campestris. Frontiers in Plant Science, 2019, 10, 414.	1.7	13
24	Proteomics, Holm Oak (Quercus ilex L.) and Other Recalcitrant and Orphan Forest Tree Species: How do They See Each Other?. International Journal of Molecular Sciences, 2019, 20, 692.	1.8	20
25	Protein Carbonylation As a Biomarker of Heavy Metal, Cd and Pb, Damage in Paspalum fasciculatum Willd. ex Flüggé. Plants, 2019, 8, 513.	1.6	8
26	Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics, 2019, 198, 1-10.	1.2	46
27	Toward characterizing germination and early growth in the non-orthodox forest tree species Quercus ilex through complementary gel and gel-free proteomic analysis of embryo and seedlings. Journal of Proteomics, 2019, 197, 60-70.	1.2	18
28	Variability studies of allochthonous stone pine (Pinus pinea L.) plantations in Chile through nut protein profiling. Journal of Proteomics, 2018, 175, 95-104.	1.2	5
29	Substantial equivalence analysis in fruits from three Theobroma species through chemical composition and protein profiling. Food Chemistry, 2018, 240, 496-504.	4.2	13
30	Germination and Early Seedling Development in Quercus ilex Recalcitrant and Non-dormant Seeds: Targeted Transcriptional, Hormonal, and Sugar Analysis. Frontiers in Plant Science, 2018, 9, 1508.	1.7	23
31	A Multi-Omics Analysis Pipeline for the Metabolic Pathway Reconstruction in the Orphan Species Quercus ilex. Frontiers in Plant Science, 2018, 9, 935.	1.7	37
32	Production of toxic metabolites by two strains of <i>Lasiodiplodia theobromae</i> , isolated from a coconut tree and a human patient. Mycologia, 2018, 110, 642-653.	0.8	27
33	Population Genetic Diversity of Quercus ilex subsp. ballota (Desf.) Samp. Reveals Divergence in Recent and Evolutionary Migration Rates in the Spanish Dehesas. Forests, 2018, 9, 337.	0.9	22
34	Holm oak proteomic response to water limitation at seedling establishment stage reveals specific changes in different plant parts as well as interaction between roots and cotyledons. Plant Science, 2018, 276, 1-13.	1.7	16
35	Proteomics Analysis of Plant Tissues Based on Two-Dimensional Gel Electrophoresis. , 2018, , 309-322.		1
36	What proteomic analysis of the apoplast tells us about plant–pathogen interactions. Plant Pathology, 2018, 67, 1647-1668.	1.2	19

#	Article	IF	CITATIONS
37	Electrophoresis-Based Proteomics to Study Development and Germination of Date Palm Zygotic Embryos. Methods in Molecular Biology, 2017, 1638, 365-380.	0.4	1
38	Plant responses to tomato chlorotic mottle virus: Proteomic view of the resistance mechanisms to a bipartite begomovirus in tomato. Journal of Proteomics, 2017, 151, 284-292.	1.2	16
39	Holm Oak (Quercus ilex) Transcriptome. De novo Sequencing and Assembly Analysis. Frontiers in Molecular Biosciences, 2017, 4, 70.	1.6	46
40	Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014. Frontiers in Plant Science, 2016, 7, 1190.	1.7	2
41	A year (2014–2015) of plants in <i>Proteomics</i> journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists. Proteomics, 2016, 16, 866-876.	1.3	9
42	Characterization of the orthodox Pinus occidentalis seed and pollen proteomes by using complementary gel-based and gel-free approaches. Journal of Proteomics, 2016, 143, 382-389.	1.2	10
43	Food and Crop Proteomics. Journal of Proteomics, 2016, 143, 1-2.	1.2	5
44	Mike Dunn: Proteomics in Spain, and the field of plant proteomics. Proteomics, 2016, 16, 2842-2844.	1.3	0
45	Proteomics for exploiting diversity of lupin seed storage proteins and their use as nutraceuticals for health and welfare. Journal of Proteomics, 2016, 143, 57-68.	1.2	42
46	Protein profile of cotyledon, tegument, and embryonic axis of mature acorns from a non-orthodox plant species: Quercus ilex. Planta, 2016, 243, 369-396.	1.6	23
47	2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage. Frontiers in Plant Science, 2015, 6, 627.	1.7	63
48	Scientific standards and MIAPEs in plant proteomics research and publications. Frontiers in Plant Science, 2015, 6, 473.	1.7	7
49	Multiplex staining of 2-DE gels for an initial phosphoproteome analysis of germinating seeds and early grown seedlings from a non-orthodox specie: Quercus ilex L. subsp. ballota [Desf.] Samp Frontiers in Plant Science, 2015, 6, 620.	1.7	33
50	Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts. Frontiers in Plant Science, 2015, 6, 839.	1.7	47
51	A physiological, biochemical and proteomic characterization of Saccharomyces cerevisiae trk1,2 transport mutants grown under limiting potassium conditions. Microbiology (United Kingdom), 2015, 161, 1260-1270.	0.7	7
52	Fourteen years of plant proteomics reflected in <i>Proteomics</i> : Moving from model species and 2DEâ€based approaches to orphan species and gelâ€free platforms. Proteomics, 2015, 15, 1089-1112.	1.3	91
53	Metabolite and proteome changes during the ripening of Syrah and Cabernet Sauvignon grape varieties cultured in a nontraditional wine region in Brazil. Journal of Proteomics, 2015, 113, 206-225.	1.2	16
54	Proteomic analysis of mycelium and secretome of different Botrytis cinerea wild-type strains. Journal of Proteomics, 2014, 97, 195-221.	1.2	74

#	Article	IF	CITATIONS
55	Back to Osborne. Sequential Protein Extraction and LC-MS Analysis for the Characterization of the Holm Oak Seed Proteome. Methods in Molecular Biology, 2014, 1072, 379-389.	0.4	12
56	Improving the quality of protein identification in non-model species. Characterization of Quercus ilex seed and Pinus radiata needle proteomes by using SEQUEST and custom databases. Journal of Proteomics, 2014, 105, 85-91.	1.2	69
57	Plant Proteomics Methods and Protocols. Methods in Molecular Biology, 2014, 1072, 3-13.	0.4	41
58	Proteotyping of Holm Oak (Quercus ilex subsp. ballota) Provenances Through Proteomic Analysis of Acorn Flour. Methods in Molecular Biology, 2014, 1072, 709-723.	0.4	3
59	Standardization of Data Processing and Statistical Analysis in Comparative Plant Proteomics Experiment. Methods in Molecular Biology, 2014, 1072, 51-60.	0.4	27
60	Making a Protein Extract from Plant Pathogenic Fungi for Gel- and LC-Based Proteomics. Methods in Molecular Biology, 2014, 1072, 93-109.	0.4	4
61	Physiological and proteomics analyses of Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) responses to Phytophthora cinnamomi. Plant Physiology and Biochemistry, 2013, 71, 191-202.	2.8	56
62	Proteomic Protocols for the Study of Filamentous Fungi. , 2013, , 299-308.		8
63	Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley. Journal of Proteomics, 2013, 94, 289-301.	1.2	150
64	Translational Proteomics Special Issue. Journal of Proteomics, 2013, 93, 1-4.	1.2	9
65	Physiological and Proteomic Analyses of Drought Stress Response in Holm Oak Provenances. Journal of Proteome Research, 2013, 12, 5110-5123.	1.8	53
66	Application of Label-Free Shotgun nUPLC–MS ^E and 2-DE Approaches in the Study of <i>Botrytis cinerea</i> Mycelium. Journal of Proteome Research, 2013, 12, 3042-3056.	1.8	28
67	Phosphorylated 11S globulins in sunflower seeds. Seed Science Research, 2013, 23, 199-204.	0.8	5
68	Extracellular Sunflower Proteins: Evidence on Non-classical Secretion of a Jacalin-Related Lectin. Protein and Peptide Letters, 2012, 19, 270-276.	0.4	44
69	Proteomics analysis of date palm leaves affected at three characteristic stages of brittle leaf disease. Planta, 2012, 236, 1599-1613.	1.6	11
70	Contribution of Proteomics to the Study of Plant Pathogenic Fungi. Journal of Proteome Research, 2012, 11, 3-16.	1.8	97
71	Adaptation to potassium starvation of wildâ€type and K + â€transport mutant (trk1,2) of Saccharomyces cerevisiae : 2â€dimensional gel electrophoresisâ€based proteomic approach. MicrobiologyOpen, 2012, 1, 182-193.	1.2	7
72	A proteomic approach analysing the Arabidopsis thaliana response to virulent and avirulent Pseudomonas syringae strains. Acta Physiologiae Plantarum, 2012, 34, 905-922.	1.0	8

#	Article	IF	CITATIONS
73	Population variability based on the morphometry and chemical composition of the acorn in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.). European Journal of Forest Research, 2012, 131, 893-904.	1.1	64
74	Proteomic analysis of Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) pollen. Journal of Proteomics, 2012, 75, 2736-2744.	1.2	39
75	Simple, rapid and reliable methods to obtain high quality RNA and genomic DNA from Quercus ilex L. leaves suitable for molecular biology studies. Acta Physiologiae Plantarum, 2012, 34, 793-805.	1.0	29
76	Facing challenges in Proteomics today and in the coming decade: Report of Roundtable Discussions at the 4th EuPA Scientific Meeting, Portugal, Estoril 2010. Journal of Proteomics, 2011, 75, 4-17.	1.2	8
77	Proteomic analysis of Arabidopsis protein S-nitrosylation in response to inoculation with Pseudomonas syringae. Acta Physiologiae Plantarum, 2011, 33, 1493-1514.	1.0	37
78	Back to the basics: Maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. Journal of Proteomics, 2011, 74, 1-18.	1.2	148
79	Application of proteomics to the assessment of the response to ionising radiation in Arabidopsis thaliana. Journal of Proteomics, 2011, 74, 1364-1377.	1.2	31
80	Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. Journal of Proteomics, 2011, 74, 1244-1255.	1.2	63
81	Plant proteomics in Europe — COST action FA0603. Journal of Proteomics, 2011, 74, 1161-1164.	1.2	2
82	Proteomics research on forest trees, the most recalcitrant and orphan plant species. Phytochemistry, 2011, 72, 1219-1242.	1.4	108
83	Diverse facets of plant proteomics. Phytochemistry, 2011, 72, 961-962.	1.4	5
84	Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. Phytochemistry, 2010, 71, 1223-1236.	1.4	42
85	2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases. Journal of Proteomics, 2010, 73, 2316-2335.	1.2	15
86	Twoâ€dimensional gel electrophoresisâ€based proteomic analysis of the <i>Medicago truncatula</i> –rust (<i>Uromyces striatus</i>) interaction. Annals of Applied Biology, 2010, 157, 243-257.	1.3	19
87	Proteomics of Plant Pathogenic Fungi. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-36.	3.0	127
88	Differences in the Triticale (X Triticosecale Wittmack) Flag Leaf 2-DE Protein Profile between Varieties and Nitrogen Fertilization Levels. Journal of Agricultural and Food Chemistry, 2010, 58, 5698-5707.	2.4	14
89	Combined Proteomic and Transcriptomic Analysis Identifies Differentially Expressed Pathways Associated to <i>Pinus radiata</i> Needle Maturation. Journal of Proteome Research, 2010, 9, 3954-3979.	1.8	56
90	Two-Dimensional Electrophoresis Based Proteomic Analysis of the Pea (<i>Pisum sativum</i>) in Response to <i>Mycosphaerella pinodes</i> . Journal of Agricultural and Food Chemistry, 2010, 58, 12822-12832.	2.4	44

#	Article	IF	CITATIONS
91	Differential expression proteomics to investigate responses and resistance to Orobanche crenata in Medicago truncatula. BMC Genomics, 2009, 10, 294.	1.2	42
92	Vesicular fractions of sunflower apoplastic fluids are associated with potential exosome marker proteins. FEBS Letters, 2009, 583, 3363-3366.	1.3	161
93	Proteomic analysis of the development and germination of date palm (<i>Phoenix) Tj ETQq1 1 0.784314 rgBT</i>	/Overlock	10 Tf 50 66
94	Understanding <i>Orobanche</i> and <i>Phelipanche</i> –host plant interactions and developing resistance. Weed Research, 2009, 49, 8-22.	0.8	60
95	Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. Journal of Proteomics, 2009, 72, 285-314.	1.2	191
96	Plant Proteomics. Journal of Proteomics, 2009, 72, 283-284.	1.2	10
97	Comparative 2-DE proteomic analysis of date palm (Phoenix dactylifera L.) somatic and zygotic embryos. Journal of Proteomics, 2009, 73, 161-177.	1.2	72
98	Effect of ABA, arginine and sucrose on protein content of date palm somatic embryos. Scientia Horticulturae, 2009, 120, 379-385.	1.7	21
99	Changes in the protein profile of Quercus ilex leaves in response to drought stress and recovery. Journal of Plant Physiology, 2009, 166, 233-245.	1.6	101
100	EuPA achieves visibility — An activity report on the first three years. Journal of Proteomics, 2008, 71, 11-18.	1.2	4
101	Evaluation of three different protocols of protein extraction for Arabidopsis thaliana leaf proteome analysis by two-dimensional electrophoresis. Journal of Proteomics, 2008, 71, 461-472.	1.2	82
102	Proteomic Analysis of Pinus radiata Needles: 2-DE Map and Protein Identification by LC/MS/MS and Substitution-Tolerant Database Searching. Journal of Proteome Research, 2008, 7, 2616-2631.	1.8	48
103	Towards a global analysis of porcine alveolar macrophages proteins through two-dimensional electrophoresis and mass spectrometry. Developmental and Comparative Immunology, 2007, 31, 1220-1232.	1.0	11
104	Constitutive Coumarin Accumulation on Sunflower Leaf Surface Prevents Rust Germ Tube Growth and Appressorium Differentiation. Crop Science, 2007, 47, 1119-1124.	0.8	33
105	Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytologist, 2007, 173, 703-712.	3.5	89
106	Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Archives of Microbiology, 2007, 187, 207-215.	1.0	70
107	Antifungal Activity of a New Phenolic Compound from Capitulum of a Head Rot-resistant Sunflower Genotype. Journal of Chemical Ecology, 2007, 33, 2245-2253.	0.9	24
108	Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress. Proteomics, 2006, 6, S207-S214.	1.3	110

#	Article	IF	CITATIONS
109	A proteomic approach to study pea (Pisum sativum) responses to powdery mildew (Erysiphe pisi). Proteomics, 2006, 6, S163-S174.	1.3	90
110	Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea. Proteomics, 2006, 6, S88-S96.	1.3	70
111	Plant proteome analysis: A 2004–2006 update. Proteomics, 2006, 6, 5529-5548.	1.3	155
112	OUT OF CÓRDOBA. Proteomics, 2006, 6, S1-S3.	1.3	2
113	Fungitoxic effect of scopolin and related coumarins on Sclerotinia sclerotiorum. A way to overcome sunflower head rot. Euphytica, 2006, 147, 451-460.	0.6	44
114	Proteomics: a promising approach to study biotic interaction in legumes. A review. Euphytica, 2006, 147, 37-47.	0.6	55
115	Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthus annuus): cytochemical studies. Journal of Experimental Botany, 2006, 57, 4189-4200.	2.4	81
116	Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Research, 2005, 45, 379-387.	0.8	107
117	The Holm Oak leaf proteome: Analytical and biological variability in the protein expression level assessed by 2-DE and protein identification tandem mass spectrometryde novosequencing and sequence similarity searching. Proteomics, 2005, 5, 222-234.	1.3	116
118	Crenate broomrape control in pea by foliar application of benzothiadiazole (BTH). Phytoparasitica, 2004, 32, 21-29.	0.6	37
119	Plant proteome analysis. Proteomics, 2004, 4, 285-298.	1.3	264
120	A proteomic approach to studying plant response to crenate broomrape (Orobanche crenata) in pea (Pisum sativum). Phytochemistry, 2004, 65, 1817-1828.	1.4	83
121	Title is missing!. Euphytica, 2003, 132, 321-329.	0.6	31
122	SAR Studies of Sesquiterpene Lactones asOrobanche cumanaSeed Germination Stimulants. Journal of Agricultural and Food Chemistry, 2002, 50, 1911-1917.	2.4	30
123	Acibenzolar- S -methyl-induced resistance to sunflower rust (Puccinia helianthi) is associated with an enhancement of coumarins on foliar surface. Physiological and Molecular Plant Pathology, 2002, 60, 155-162.	1.3	65
124	Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant Physiology and Biochemistry, 2001, 39, 785-795.	2.8	41
125	Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefl.) parasitism: induced synthesis and excretion of 7â€hydroxylated simple coumarins. Journal of Experimental Botany, 2001, 52, 2227-2234.	2.4	142
126	Sunflower sesquiterpene lactone models induce Orobanche cumana seed germination. Phytochemistry, 2000, 53, 45-50.	1.4	64

#	Article	IF	CITATIONS
127	AGRONOMIC ASPECTS OF THE SUNFLOWER 7-HYDROXYLATED SIMPLE COUMARINS / ASPECTOS AGRONÓMICOS DE LAS CUMARINAS SIMPLES 7- HIDROXILADAS EN GIRASOL / ASPECTS AGRONOMIQUES DE 7 COUMARINES HYDROXYLES SIMPLES CHEZ LE TOURNESOL. Helia, 2000, 23, 105-112.	0.0	7
128	Sunflower Coumarin Phytoalexins Inhibit the Growth of the Virulent Pathogen Sclerotinia sclerotiorum. Journal of Phytopathology, 1999, 147, 441-443.	0.5	3
129	Coumarins in helianthus tuberosus : characterization, induced accumulation and biosynthesis. Phytochemistry, 1998, 49, 1029-1036.	1.4	43
130	Characterization and inducibility of a scopoletin-degrading enzyme from sunflower. Phytochemistry, 1997, 45, 1109-1114.	1.4	20
131	The production of coumarin phytoalexins in different plant organs of sunflower (Helianthus annuus) Tj ETQq1 1 0.	.784314 r 1.6	gðð lOverloc
132	Induction of different chitinase andl'-1,3-glucanase isoenzymes in sunflower (Helianthus annuus L.) seedlings in response to infection byPlasmopara halstedii. European Journal of Plant Pathology, 1996, 102, 401-405.	0.8	17
133	Abiotic elicitation of coumarin phytoalexins in sunflower. Phytochemistry, 1995, 38, 1185-1191.	1.4	70
134	Root-shoot signalling in sunflower plants with confined root systems. Plant and Soil, 1994, 166, 31-36.	1.8	29
135	Chitinase and beta-1,3-glucanase activities in chickpea (Cicer arietinum). Induction of different isoenzymes in response to wounding and ethephon. Physiologia Plantarum, 1994, 92, 654-660.	2.6	20
136	Stress Responses in Alfalfa (<i>Medicago sativa</i> L.). Plant Physiology, 1990, 92, 447-455.	2.3	87
137	Stress responses in alfalfa (Medicago sativa L.) VII. Induction of defence related mRNAs in elicitor-treated cell suspension cultures. Physiological and Molecular Plant Pathology, 1990, 37, 293-307.	1.3	23
138	L-Phenylalanine Ammonia-Lyase from Sunflower Hypocotyls: Modulation by Cinnamic Acids. Journal of Plant Physiology, 1990, 136, 415-420.	1.6	7
139	Effects of actinomycin D, cordycepin and cycloheximide on phenylalanine ammonia-lyase turnover in sunflower hypocotyls. Journal of Plant Physiology, 1990, 137, 252-255.	1.6	2
140	Purification and partial characterization of soluble α-mannosidase isoforms from sunflower (Helianthus annuus L.) hypocotyls. Plant Science, 1989, 62, 11-19.	1.7	2
141	Purification and properties of phenylalanine ammonia-lyase from sunflower (Helianthus annuus L.) hypocotyls. Biochimica Et Biophysica Acta - General Subjects, 1988, 964, 73-82.	1.1	19
142	Induction of phenylalanine ammonia-lyase in hypocotyls of sunflower seedlings by light, excision and sucrose. Physiologia Plantarum, 1984, 60, 159-165.	2.6	14
143	Can the increment of temperature associated to climate change alter the olive oil chemical composition and its nutritional and nutraceutical properties?. , 0, , .		0
144	Identification of Proteases and Protease Inhibitors in Seeds of the Recalcitrant Forest Tree Species Quercus ilex. Frontiers in Plant Science, 0, 13, .	1.7	3