Francois F Maree

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6595681/publications.pdf

Version: 2024-02-01

430874 501196 50 954 18 28 citations h-index g-index papers 52 52 52 887 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure-based energetics of protein interfaces guides foot-and-mouth disease virus vaccine design. Nature Structural and Molecular Biology, 2015, 22, 788-794.	8.2	89
2	Waves of endemic foot-and-mouth disease in eastern Africa suggest feasibility of proactive vaccination approaches. Nature Ecology and Evolution, 2018, 2, 1449-1457.	7.8	66
3	Sequence-Based Prediction for Vaccine Strain Selection and Identification of Antigenic Variability in Foot-and-Mouth Disease Virus. PLoS Computational Biology, 2010, 6, e1001027.	3.2	63
4	Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. Journal of Virology, 2016, 90, 5132-5140.	3.4	59
5	Mosaic structure of foot-and-mouth disease virus genomes. Journal of General Virology, 2007, 88, 487-492.	2.9	57
6	Mapping of amino acid residues responsible for adhesion of cell culture-adapted foot-and-mouth disease SAT type viruses. Virus Research, 2010, 153, 82-91.	2.2	40
7	Predicting antigenic sites on the foot-and-mouth disease virus capsid of the South African Territories types using virus neutralization data. Journal of General Virology, 2011, 92, 2297-2309.	2.9	40
8	Evaluation of a Novel Heminested PCR Assay Based on the Phosphoglucosamine Mutase Gene for Detection of Helicobacter pylori in Saliva and Dental Plaque. Journal of Clinical Microbiology, 2002, 40, 205-209.	3.9	36
9	The history of foot-and-mouth disease virus serotype C: the first known extinct serotype?. Virus Evolution, 2021, 7, .	4.9	35
10	Tracking the Antigenic Evolution of Foot-and-Mouth Disease Virus. PLoS ONE, 2016, 11, e0159360.	2.5	32
11	Challenges and prospects for the control of foot-and-mouth disease: an African perspective. Veterinary Medicine: Research and Reports, 2014, 5, 119.	0.6	28
12	SAT2 Foot-and-Mouth Disease Virus Structurally Modified for Increased Thermostability. Journal of Virology, 2017, 91, .	3.4	28
13	Hepatic osteodystrophy in rats results mainly from portasystemic shunting. Gut, 2003, 52, 580-585.	12.1	23
14	Custom-engineered chimeric foot-and-mouth disease vaccine elicits protective immune responses in pigs. Journal of General Virology, 2011, 92, 849-859.	2.9	23
15	Endemic persistence of a highly contagious pathogen: Foot-and-mouth disease in its wildlife host. Science, 2021, 374, 104-109.	12.6	23
16	Transmission of Foot-and-Mouth Disease SAT2 Viruses at the Wildlife–Livestock Interface of Two Major Transfrontier Conservation Areas in Southern Africa. Frontiers in Microbiology, 2016, 7, 528.	3.5	22
17	Spatial distribution and risk factors for foot and mouth disease virus in Uganda: Opportunities for strategic surveillance. Preventive Veterinary Medicine, 2019, 171, 104766.	1.9	22
18	Analysis of SAT Type Foot-And-Mouth Disease Virus Capsid Proteins and the Identification of Putative Amino Acid Residues Affecting Virus Stability. PLoS ONE, 2013, 8, e61612.	2.5	21

#	Article	IF	CITATIONS
19	Analysis of SAT1 type foot-and-mouth disease virus capsid proteins: Influence of receptor usage on the properties of virus particles. Virus Research, 2011, 155, 462-472.	2.2	20
20	Detection of Pathogen Exposure in African Buffalo Using Non-Specific Markers of Inflammation. Frontiers in Immunology, 2017, 8, 1944.	4.8	19
21	Intra-serotype SAT2 chimeric foot-and-mouth disease vaccine protects cattle against FMDV challenge. Vaccine, 2015, 33, 2909-2916.	3.8	18
22	A second RGD motif in the 1D capsid protein of a SAT1 type foot-and-mouth disease virus field isolate is not essential for attachment to target cells. Virus Research, 2007, 124, 184-192.	2.2	17
23	The use of soluble African horse sickness viral protein 7 as an antigen delivery and presentation system. Virus Research, 2011, 156, 35-48.	2.2	17
24	Synthesis of empty african horse sickness virus particles. Virus Research, 2016, 213, 184-194.	2.2	17
25	Persistent Infection of African Buffalo (Syncerus caffer) with Foot-and-Mouth Disease Virus: Limited Viral Evolution and No Evidence of Antibody Neutralization Escape. Journal of Virology, 2019, 93, .	3.4	15
26	Determining the Epitope Dominance on the Capsid of a Serotype SAT2 Foot-and-Mouth Disease Virus by Mutational Analyses. Journal of Virology, 2014, 88, 8307-8318.	3.4	14
27	Pervasive within-host recombination and epistasis as major determinants of the molecular evolution of the foot-and-mouth disease virus capsid. PLoS Pathogens, 2020, 16, e1008235.	4.7	14
28	Chimeric O1K foot-and-mouth disease virus with SAT2 outer capsid as an FMD vaccine candidate. Scientific Reports, 2018, 8, 13654.	3.3	11
29	Evaluation of immune responses of stabilised SAT2 antigens of foot-and-mouth disease in cattle. Vaccine, 2017, 35, 5426-5433.	3.8	9
30	Mapping of antigenic determinants on a SAT2 foot-and-mouth disease virus using chicken single-chain antibody fragments. Virus Research, 2012, 167, 370-379.	2.2	8
31	A sparse hierarchical Bayesian model for detecting relevant antigenic sites in virus evolution. Computational Statistics, 2017, 32, 803-843.	1.5	8
32	Inherent biophysical stability of foot-and-mouth disease SAT1, SAT2 and SAT3 viruses. Virus Research, 2019, 264, 45-55.	2.2	7
33	Determination of common genetic variants within the non-structural proteins of foot-and-mouth disease viruses isolated in sub-Saharan Africa. Veterinary Microbiology, 2015, 177, 106-122.	1.9	6
34	Development and validation of a foot-and-mouth disease virus SAT serotype-specific 3ABC assay to differentiate infected from vaccinated animals. Journal of Virological Methods, 2018, 255, 44-51.	2.1	6
35	Diagnostic and Epitope Mapping Potential of Single-Chain Antibody Fragments Against Foot-and-Mouth Disease Virus Serotypes A, SAT1, and SAT3. Frontiers in Veterinary Science, 2020, 7, 475.	2.2	6
36	Phylogeographic analysis of footâ€andâ€mouth disease virus serotype O dispersal and associated drivers in East Africa. Molecular Ecology, 2021, 30, 3815-3825.	3.9	6

3

#	Article	IF	CITATIONS
37	Crystal structure of the 3C protease from Southern African Territories type 2 foot-and-mouth disease virus. PeerJ, 2016, 4, e1964.	2.0	6
38	Efficacy of SAT2 Foot-and-Mouth Disease Vaccines Formulated with Montanide ISA 206B and Quil-A Saponin Adjuvants. Vaccines, 2021, 9, 996.	4.4	5
39	The Culicoides sonorensis inhibitor of apoptosis 1 protein protects mammalian cells from apoptosis induced by infection with African horse sickness virus and bluetongue virus. Virus Research, 2017, 232, 152-161.	2.2	3
40	Symmetrical arrangement of positively charged residues around the 5-fold axes of SAT type foot-and-mouth disease virus enhances cell culture of field viruses. PLoS Pathogens, 2020, 16, e1008828.	4.7	3
41	Production of foot-and-mouth disease virus SAT2 VP1 protein. AMB Express, 2020, 10, 2.	3.0	3
42	African horse sickness virus infects BSR cells through macropinocytosis. Virology, 2016, 497, 217-232.	2.4	2
43	Pathogenesis, biophysical stability and phenotypic variance of SAT2 foot-and-mouth disease virus. Veterinary Microbiology, 2020, 243, 108614.	1.9	2
44	Genetic Basis of Antigenic Variation of SAT3 Foot-And-Mouth Disease Viruses in Southern Africa. Frontiers in Veterinary Science, 2020, 7, 568.	2.2	1
45	Title is missing!. , 2020, 16, e1008828.		O
46	Title is missing!. , 2020, 16, e1008828.		0
47	Title is missing!. , 2020, 16, e1008828.		O
48	Title is missing!. , 2020, 16, e1008828.		0
49	Title is missing!. , 2020, 16, e1008828.		O
50	Title is missing!. , 2020, 16, e1008828.		0