George R Stark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6595551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Validationâ€Based Insertional Mutagenesis (VBIM), A Powerful Forward Genetic Screening Strategy. Current Protocols, 2022, 2, e394.	1.3	0
2	H3K9 methylation drives resistance to androgen receptor–antagonist therapy in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2114324119.	3.3	21
3	Activated Protein Phosphatase 2A Disrupts Nutrient Sensing Balance Between Mechanistic Target of Rapamycin Complex 1 and Adenosine Monophosphate–Activated Protein Kinase, Causing Sarcopenia in Alcoholâ€Associated Liver Disease. Hepatology, 2021, 73, 1892-1908.	3.6	17
4	A virus-induced conformational switch of STAT1-STAT2 dimers boosts antiviral defenses. Cell Research, 2021, 31, 206-218.	5.7	35
5	Inhibiting DNA-PK induces glioma stem cell differentiation and sensitizes glioblastoma to radiation in mice. Science Translational Medicine, 2021, 13, .	5.8	37
6	Bazedoxifene inhibits sustained STAT3 activation and increases survival in GBM. Translational Oncology, 2021, 14, 101192.	1.7	8
7	Pharmacological inhibition of BACE1 suppresses glioblastoma growth by stimulating macrophage phagocytosis of tumor cells. Nature Cancer, 2021, 2, 1136-1151.	5.7	41
8	The ubiquitin E3 ligase FBXO22 degrades PD-L1 and sensitizes cancer cells to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	32
9	PD-L1 sustains chronic, cancer cell–intrinsic responses to type I interferon, enhancing resistance to DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
10	Suppressing <scp>PAR</scp> ylation by 2′,5′â€oligoadenylate synthetase 1 inhibits <scp>DNA</scp> damageâ€induced cell death. EMBO Journal, 2020, 39, e101573.	3.5	22
11	Loss of ZIP facilitates JAK2-STAT3 activation in tamoxifen-resistant breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15047-15054.	3.3	21
12	Dual Role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nature Communications, 2020, 11, 3015.	5.8	111
13	Germline PTEN mutations are associated with a skewed peripheral immune repertoire in humans and mice. Human Molecular Genetics, 2020, 29, 2353-2364.	1.4	8
14	Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nature Communications, 2020, 11, 900.	5.8	108
15	Role of Oligoadenylate Synthetases in Myeloid Neoplasia. Blood, 2020, 136, 29-30.	0.6	0
16	Impaired Ribosomal Biogenesis by Noncanonical Degradation of <i>β</i> -Catenin during Hyperammonemia. Molecular and Cellular Biology, 2019, 39, .	1.1	18
17	OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5071-5076.	3.3	58
18	IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3906-3911	3.3	80

#	Article	IF	CITATIONS
19	Responses to Cytokines and Interferons that Depend upon JAKs and STATs. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028555.	2.3	79
20	A new STAT3 function: pH regulation. Cell Research, 2018, 28, 1045-1045.	5.7	2
21	TRAF4 binds to the juxtamembrane region of EGFR directly and promotes kinase activation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11531-11536.	3.3	12
22	<i>IFNL4</i> -ΔG Allele Is Associated with an Interferon Signature in Tumors and Survival of African-American Men with Prostate Cancer. Clinical Cancer Research, 2018, 24, 5471-5481.	3.2	37
23	Multiple tumor suppressors regulate a HIF-dependent negative feedback loop via ISGF3 in human clear cell renal cancer. ELife, 2018, 7, .	2.8	25
24	Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. Proceedings of the United States of America, 2017, 114, 13792-13797.	3.3	93
25	Negative regulation of type I <scp>IFN</scp> signaling by phosphorylation of <scp>STAT</scp> 2 on T387. EMBO Journal, 2017, 36, 202-212.	3.5	27
26	Response to interferons and antibacterial innate immunity in the absence of tyrosineâ€phosphorylated <scp>STAT</scp> 1. EMBO Reports, 2016, 17, 367-382.	2.0	50
27	Pharmacological Targeting of the Histone Chaperone Complex FACT Preferentially Eliminates Glioblastoma Stem Cells and Prolongs Survival in Preclinical Models. Cancer Research, 2016, 76, 2432-2442.	0.4	62
28	Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. International Journal of Cancer, 2015, 136, E51-61.	2.3	28
29	Roles of unphosphorylated ISGF3 in HCV infection and interferon responsiveness. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10443-10448.	3.3	70
30	Erlotinib protects against LPS-induced Endotoxicity because TLR4 needs EGFR to signal. Proceedings of the United States of America, 2015, 112, 9680-9685.	3.3	71
31	STAT3-driven transcription depends upon the dimethylation of K49 by EZH2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3985-3990.	3.3	93
32	NF-κB: Regulation by Methylation. Cancer Research, 2015, 75, 3692-3695.	0.4	94
33	A novel IL-17 signaling pathway controlling keratinocyte proliferation and tumorigenesis via the TRAF4–ERK5 axis. Journal of Experimental Medicine, 2015, 212, 1571-1587.	4.2	170
34	Using Sequential Immunoprecipitation and Mass Spectrometry to Identify Methylation of NF-κB. Methods in Molecular Biology, 2015, 1280, 383-393.	0.4	5
35	Critical Role for Lysine 685 in Gene Expression Mediated by Transcription Factor Unphosphorylated STAT3. Journal of Biological Chemistry, 2014, 289, 30763-30771.	1.6	48
36	Interferons and Their Stimulated Genes in the Tumor Microenvironment. Seminars in Oncology, 2014, 41, 156-173.	0.8	189

#	Article	IF	CITATIONS
37	EGF receptor uses SOS1 to drive constitutive activation of NFκB in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11721-11726.	3.3	43
38	STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16975-16980.	3.3	222
39	Role of lysine methylation of NF-κB in differential gene regulation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13510-13515.	3.3	42
40	IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO Journal, 2013, 32, 2751-2763.	3.5	269
41	PHF20 regulates NF-κB signalling by disrupting recruitment of PP2A to p65. Nature Communications, 2013, 4, 2062.	5.8	54
42	PRMT5 dimethylates R30 of the p65 subunit to activate NF-κB. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13516-13521.	3.3	205
43	The JAK-STAT Pathway at Twenty. Immunity, 2012, 36, 503-514.	6.6	1,221
44	FAM83B mediates EGFR- and RAS-driven oncogenic transformation. Journal of Clinical Investigation, 2012, 122, 3197-3210.	3.9	94
45	The Functions of Signal Transducers and Activators of Transcriptions 1 and 3 as Cytokine-Inducible Proteins. Journal of Interferon and Cytokine Research, 2011, 31, 33-40.	0.5	118
46	Nonreceptor Tyrosine Kinase BMX Maintains Self-Renewal and Tumorigenic Potential of Glioblastoma Stem Cells by Activating STAT3. Cancer Cell, 2011, 19, 498-511.	7.7	233
47	Lysine methylation of promoter-bound transcription factors and relevance to cancer. Cell Research, 2011, 21, 375-380.	5.7	66
48	FER tyrosine kinase (FER) overexpression mediates resistance to quinacrine through EGF-dependent activation of NF-ÂB. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7968-7973.	3.3	43
49	Genetic analysis of signaling pathways in human cells. FASEB Journal, 2011, 25, 19.1.	0.2	0
50	Reversible methylation of promoter-bound STAT3 by histone-modifying enzymes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21499-21504.	3.3	272
51	Regulation of NF-κB by NSD1/FBXL11-dependent reversible lysine methylation of p65. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 46-51.	3.3	265
52	Use of Forward Genetics to Discover Novel Regulators of NF-ÂB. Cold Spring Harbor Perspectives in Biology, 2010, 2, a001966-a001966.	2.3	8
53	Validation-based insertional mutagenesis identifies lysine demethylase FBXL11 as a negative regulator of NFκB. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16339-16344.	3.3	74
54	Overexpression of Kinesins Mediates Docetaxel Resistance in Breast Cancer Cells. Cancer Research, 2009, 69, 8035-8042.	0.4	112

#	Article	IF	CITATIONS
55	Unphosphorylated STAT1 prolongs the expression of interferon-induced immune regulatory genes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9373-9378.	3.3	259
56	Roles of unphosphorylated STATs in signaling. Cell Research, 2008, 18, 443-451.	5.7	313
57	Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFÂB. Genes and Development, 2007, 21, 1396-1408.	2.7	532
58	Signal Transducer and Activator of Transcription 1 ls Required for Optimal Foam Cell Formation and Atherosclerotic Lesion Development. Circulation, 2007, 115, 2939-2947.	1.6	86
59	How cells respond to interferons revisited: From early history to current complexity. Cytokine and Growth Factor Reviews, 2007, 18, 419-423.	3.2	159
60	Complex Modulation of Cell Type-Specific Signaling in Response to Type I Interferons. Immunity, 2006, 25, 361-372.	6.6	480
61	Control of the G ₂ /M Transition. Molecular Biotechnology, 2006, 32, 227-248.	1.3	238
62	Small molecules that reactivate p53 in renal cell carcinoma reveal a NF-ÂB-dependent mechanism of p53 suppression in tumors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17448-17453.	3.3	257
63	My Life in Science, Not the Restaurant Business. Journal of Biological Chemistry, 2005, 280, 9753-9760.	1.6	6
64	Mutagenesis by reversible promoter insertion to study the activation of NF-ÂB. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6425-6430.	3.3	26
65	Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Research, 2005, 65, 939-47.	0.4	286
66	Inhibitor of ÂB kinase is required to activate a subset of interferon Â-stimulated genes. Proceedings of the United States of America, 2004, 101, 7994-7998.	3.3	60
67	Alternative Activation of STAT1 and STAT3 in Response to Interferon-Î ³ . Journal of Biological Chemistry, 2004, 279, 41679-41685.	1.6	281
68	Secreted transforming growth factor Â2 activates NF-ÂB, blocks apoptosis, and is essential for the survival of some tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7112-7117.	3.3	91
69	Mutant human cells with constitutive activation of NF-ÂB. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 192-197.	3.3	25
70	Secretion of cytokines and growth factors as a general cause of constitutive NFκB activation in cancer. Oncogene, 2004, 23, 2138-2145.	2.6	72
71	Analyzing the G2/M Checkpoint. , 2004, 280, 051-082.		121

Forward Genetics in Mammalian Cells. , 2003, , 299-309.

#	Article	IF	CITATIONS
73	Requirement of Phosphoinositide 3-Kinase and Akt for Interferon-β-mediated Induction of the β-R1(SCYB11) Gene. Journal of Biological Chemistry, 2002, 277, 38456-38461.	1.6	39
74	Stat1-dependent and -independent pathways in IFN-Î ³ -dependent signaling. Trends in Immunology, 2002, 23, 96-101.	2.9	533
75	Phosphorylation of serines 15 and 37 is necessary for efficient accumulation of p53 following irradiation with UV. Oncogene, 2001, 20, 1076-1084.	2.6	60
76	Roles of Phosphatidylinositol 3-Kinase in Interferon-Î ³ -dependent Phosphorylation of STAT1 on Serine 727 and Activation of Gene Expression. Journal of Biological Chemistry, 2001, 276, 33361-33368.	1.6	222
77	A Role for NF-κB in the Induction of β-R1 by Interferon-β. Journal of Biological Chemistry, 2001, 276, 44365-44368.	1.6	20
78	Complex roles of Stat1 in regulating gene expression. Oncogene, 2000, 19, 2619-2627.	2.6	294
79	How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO Journal, 2000, 19, 4111-4122.	3.5	312
80	Regulation of c-myc expression by IFN-γ through Stat1-dependent and -independent pathways. EMBO Journal, 2000, 19, 263-272.	3.5	281
81	Effects of Genome Position and the DNA Damage Checkpoint on the Structure and Frequency of sod2 Gene Amplification in Fission Yeast. Molecular Biology of the Cell, 1999, 10, 2199-2208.	0.9	4
82	p53 inhibits entry into mitosis when DNA synthesis is blocked. Oncogene, 1999, 18, 283-295.	2.6	74
83	Mutant Cells That Do Not Respond to Interleukin-1 (IL-1) Reveal a Novel Role for IL-1 Receptor-Associated Kinase. Molecular and Cellular Biology, 1999, 19, 4643-4652.	1.1	213
84	HOW CELLS RESPOND TO INTERFERONS. Annual Review of Biochemistry, 1998, 67, 227-264.	5.0	3,630
85	JAK2 and STAT5, but not JAK1 and STAT1, Are Required for Prolactin-Induced β-Lactoglobulin Transcription. Molecular Endocrinology, 1997, 11, 1180-1188.	3.7	40
86	Defective TNF-α-Induced Apoptosis in STAT1-Null Cells Due to Low Constitutive Levels of Caspases. Science, 1997, 278, 1630-1632.	6.0	472
87	The p53 activation and apoptosis induced by DNA damage are reversibly inhibited by salicylate. Oncogene, 1997, 14, 2503-2510.	2.6	48
88	Defective induction but normal activation and function of p53 in mouse cells lacking poly-ADP-ribose polymerase. Oncogene, 1997, 15, 1035-1041.	2.6	92
89	Jak1 Plays an Essential Role for Receptor Phosphorylation and Stat Activation in Response to Granulocyte Colony-Stimulating Factor. Blood, 1997, 90, 597-604.	0.6	7
90	Regulation of STATâ€dependent pathways by growth factors and cytokines. FASEB Journal, 1996, 10, 1578-1588.	0.2	273

#	Article	IF	CITATIONS
91	Formation of STAT1-STAT2 Heterodimers and Their Role in the Activation of IRF-1 Gene Transcription by Interferon-α. Journal of Biological Chemistry, 1996, 271, 5790-5794.	1.6	177
92	The protein tyrosine kinase JAK1 complements defects in interferon-α/β and -γ signal transduction. Nature, 1993, 366, 129-135.	13.7	785
93	Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-& gamma; signal transduction pathway. Nature, 1993, 366, 166-170.	13.7	532
94	Regulation and Mechanisms of Mammalian Gene Amplification. Advances in Cancer Research, 1993, 61, 87-113.	1.9	136
95	A protein tyrosine kinase in the interferon $\hat{I}\pm\hat{I}^2$ signaling pathway. Cell, 1992, 70, 313-322.	13.5	903
96	Distinctive chromosomal structures are formed very early in the amplification of CAD genes in Syrian hamster cells. Cell, 1990, 63, 1219-1227.	13.5	143
97	Recent progress in understanding mechanisms of mammalian DNA amplification. Cell, 1989, 57, 901-908.	13.5	458
98	α-Interferon-induced transcription of HLA and metallothionein genes containing homologous upstream sequences. Nature, 1985, 314, 637-639.	13.7	511
99	Differential regulation of interferon-induced mRNAs and c-myc mRNA by alpha- and gamma-interferons. FEBS Journal, 1985, 153, 367-371.	0.2	120
100	Analysis of 2′,5′-oligoadenylates in cells and tissues. Analytical Biochemistry, 1984, 136, 136-141.	1.1	17
101	Transcriptional and posttranscriptional regulation of interferon-induced gene expression in human cells. Cell, 1984, 38, 745-755.	13.5	760
102	Stable mutants of mammalian cells that overproduce the first three enzymes of pyrimidine nucleotide biosynthesis. Cell, 1976, 9, 541-550.	13.5	226
103	Aspartate Transcarbamylase. Journal of Biological Chemistry, 1971, 246, 6599-6605.	1.6	395
104	The Use of Cyanate for the Determination of NH2-terminal Residues in Proteins. Journal of Biological Chemistry, 1963, 238, 214-226.	1.6	449
105	Reactions of the Cyanate Present in Aqueous Urea with Amino Acids and Proteins. Journal of Biological Chemistry, 1960, 235, 3177-3181.	1.6	603