
Dhiman Maitra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6594742/publications.pdf Version: 2024-02-01

Πηιμανι Μαιτρα

#	Article	IF	CITATIONS
1	Tumor-selective proteotoxicity of verteporfin inhibits colon cancer progression independently of YAP1. Science Signaling, 2015, 8, ra98.	3.6	152
2	Potent antioxidative activity of lycopene: A potential role in scavenging hypochlorous acid. Free Radical Biology and Medicine, 2010, 49, 205-213.	2.9	82
3	Reaction of hemoglobin with HOCI: Mechanism of heme destruction and free iron release. Free Radical Biology and Medicine, 2011, 51, 374-386.	2.9	68
4	Myeloperoxidase acts as a source of free iron during steady-state catalysis by a feedback inhibitory pathway. Free Radical Biology and Medicine, 2013, 63, 90-98.	2.9	45
5	Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell Injury. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 535-548.	4.5	44
6	The reaction of HOCl and cyanocobalamin: Corrin destruction and the liberation of cyanogen chloride. Free Radical Biology and Medicine, 2012, 52, 616-625.	2.9	40
7	Mechanism of hypochlorous acid-mediated heme destruction and free iron release. Free Radical Biology and Medicine, 2011, 51, 364-373.	2.9	38
8	Melatonin prevents hypochlorous acidâ€induced alterations in microtubule and chromosomal structure in metaphaseâ€il mouse oocytes. Journal of Pineal Research, 2012, 53, 122-128.	7.4	38
9	Impact of hydrogen peroxide-driven Fenton reaction on mouse oocyte quality. Free Radical Biology and Medicine, 2013, 58, 154-159.	2.9	38
10	Hypochlorous Acid-Induced Heme Degradation from Lactoperoxidase as a Novel Mechanism of Free Iron Release and Tissue Injury in Inflammatory Diseases. PLoS ONE, 2011, 6, e27641.	2.5	34
11	Lamin aggregation is an early sensor of porphyria-induced liver injury. Journal of Cell Science, 2013, 126, 3105-12.	2.0	32
12	IL-6 and Mouse Oocyte Spindle. PLoS ONE, 2012, 7, e35535.	2.5	30
13	Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. Journal of Hepatology, 2019, 70, 108-117.	3.7	29
14	Ambient Light Promotes Selective Subcellular Proteotoxicity after Endogenous and Exogenous Porphyrinogenic Stress. Journal of Biological Chemistry, 2015, 290, 23711-23724.	3.4	27
15	Myeloperoxidase interaction with peroxynitrite: chloride deficiency and heme depletion. Free Radical Biology and Medicine, 2009, 47, 431-439.	2.9	25
16	Melatonin prevents hypochlorous acidâ€mediated cyanocobalamin destruction and cyanogen chloride generation. Journal of Pineal Research, 2018, 64, e12463.	7.4	23
17	Peroxynitrite affects the cumulus cell defense of metaphase II mouse oocytes leading to disruption of the spindle structure inÂvitro. Fertility and Sterility, 2013, 100, 578-584.e1.	1.0	22
18	Melatonin attenuates hypochlorous acidâ€mediated heme destruction, free iron release, and protein aggregation in hemoglobin. Journal of Pineal Research, 2012, 53, 198-205.	7.4	21

DHIMAN MAITRA

#	Article	IF	CITATIONS
19	A precursorâ€inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress. FASEB Journal, 2016, 30, 1798-1810.	0.5	21
20	Oxygen and Conformation Dependent Protein Oxidation and Aggregation by Porphyrins in Hepatocytes and Light-Exposed Cells. Cellular and Molecular Gastroenterology and Hepatology, 2019, 8, 659-682.e1.	4.5	19
21	Kinetic Studies on the Reaction between Dicyanocobinamide and Hypochlorous Acid. PLoS ONE, 2014, 9, e110595.	2.5	14
22	Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. Journal of Inorganic Biochemistry, 2014, 140, 245-254.	3.5	13
23	Melatonin Prevents Myeloperoxidase Heme Destruction and the Generation of Free Iron Mediated by Self-Generated Hypochlorous Acid. PLoS ONE, 2015, 10, e0120737.	2.5	13
24	Melatonin Can Mediate Its Vascular Protective Effect by Modulating Free Iron Level by Inhibiting Hypochlorous Acid–Mediated Hemoprotein Heme Destruction. Hypertension, 2011, 57, e22; author reply e23.	2.7	11
25	Protein-aggregating ability of different protoporphyrin-IX nanostructures is dependent on their oxidation and protein-binding capacity. Journal of Biological Chemistry, 2021, 297, 100778.	3.4	6
26	PP2 protects from keratin mutation–associated liver injury and filament disruption via SRC kinase inhibition in male but not female mice. Hepatology, 2023, 77, 144-158.	7.3	4
27	Geographic prevalence variation and phenotype penetrance in porphyria: insights from a Chinese population database. Blood Advances, 2021, 5, 12-15.	5.2	3
28	Acitretin mitigates uroporphyrin-induced bone defects in congenital erythropoietic porphyria models. Scientific Reports, 2021, 11, 9601.	3.3	2
29	Ethanol and Acetaminophen Synergistically Induce Hepatic Aggregation and TCH346-Insensitive Nuclear Translocation of GAPDH. PLoS ONE, 2016, 11, e0160982.	2.5	2
30	The reaction of HOCl and cyanocobalamin: corrin destruction and the liberation of cyanogen chloride. FASEB Journal, 2012, 26, 126.1.	0.5	1
31	Potent antioxidative activity of lycopene: a potential role in scavenging hypochlorous acid. FASEB Journal, 2010, 24, 92.1.	0.5	0
32	Melatonin can attenuate HOClâ€mediated hemolysis, free iron release and heme degradation from hemoglobin. FASEB Journal, 2012, 26, 641.13.	0.5	0
33	Porphyrin Nanostructures Modulates Its Protein Aggregation Ability via Differential Oxidation and Protein Binding. FASEB Journal, 2019, 33, 784.13.	0.5	0