Su-Jing Wang, ç**Ž**ç"¦è•

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6594427/publications.pdf

Version: 2024-02-01

51 papers	3,752 citations	24 h-index	330143 37 g-index
51	51	51	2345
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Diagnosis of COVID-19 Pneumonia via a Novel Deep Learning Architecture. Journal of Computer Science and Technology, 2022, 37, 330-343.	1.5	43
2	Facial Micro-Expression Recognition Based on Deep Local-Holistic Network. Applied Sciences (Switzerland), 2022, 12, 4643.	2.5	11
3	MESNet: A Convolutional Neural Network for Spotting Multi-Scale Micro-Expression Intervals in Long Videos. IEEE Transactions on Image Processing, 2021, 30, 3956-3969.	9.8	67
4	Video-based Facial Micro-Expression Analysis: A Survey of Datasets, Features and Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, PP, 1-1.	13.9	82
5	A Brief Guide., 2021,,.		4
6	FME'21., 2021,,.		6
7	Spontaneous Facial Expressions and Micro-expressions Coding: From Brain to Face. Frontiers in Psychology, 2021, 12, 784834.	2.1	4
8	Spotting Macro-and Micro-expression Intervals in Long Video Sequences. , 2020, , .		22
9	MEGC2020 - The Third Facial Micro-Expression Grand Challenge. , 2020, , .		12
10	Spatio-temporal fusion for Macro- and Micro-expression Spotting in Long Video Sequences. , 2020, , .		35
11	Intelligent computational techniques for multimodal data. Multimedia Tools and Applications, 2019, 78, 23809-23814.	3.9	4
12	Spotting Micro-Expressions on Long Videos Sequences. , 2019, , .		22
13	Action Units recognition based on Deep Spatial-Convolutional and Multi-label Residual network. Neurocomputing, 2019, 359, 130-138.	5.9	7
14	CDBV: A Driving Dataset With Chinese Characteristics From a Bike View. IEEE Access, 2019, 7, 51714-51723.	4.2	0
15	Discriminative Spatiotemporal Local Binary Pattern with Revisited Integral Projection for Spontaneous Facial Micro-Expression Recognition. IEEE Transactions on Affective Computing, 2019, 10, 32-47.	8.3	106
16	Alcoholism Detection by Data Augmentation and Convolutional Neural Network with Stochastic Pooling. Journal of Medical Systems, 2018, 42, 2.	3.6	133
17	CAS(ME): A Database for Spontaneous Macro-Expression and Micro-Expression Spotting and Recognition. IEEE Transactions on Affective Computing, 2018, 9, 424-436.	8.3	162
18	Micro-Expression Recognition Based on Local Two-Order Gradient Pattern., 2018,,.		4

#	Article	IF	Citations
19	Micro-expression recognition with small sample size by transferring long-term convolutional neural network. Neurocomputing, 2018, 312, 251-262.	5.9	91
20	Facial Micro-Expressions Grand Challenge 2018 Summary. , 2018, , .		35
21	A main directional maximal difference analysis for spotting facial movements from long-term videos. Neurocomputing, 2017, 230, 382-389.	5.9	61
22	A Main Directional Maximal Difference Analysis for Spotting Micro-expressions. Lecture Notes in Computer Science, 2017, , 449-461.	1.3	4
23	Sparse tensor canonical correlation analysis for micro-expression recognition. Neurocomputing, 2016, 214, 218-232.	5.9	41
24	An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson \times^3 s disease. Neurocomputing, 2016, 184, 131-144.	5.9	222
25	A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition. IEEE Transactions on Affective Computing, 2016, 7, 299-310.	8.3	298
26	A PMJ-inspired cognitive framework for natural scene categorization in line drawings. Neurocomputing, 2016, 173, 2041-2048.	5.9	4
27	CAS(ME)2: A Database of Spontaneous Macro-expressions and Micro-expressions. Lecture Notes in Computer Science, 2016, , 48-59.	1.3	18
28	Facial Micro-Expression Recognition Using Spatiotemporal Local Binary Pattern with Integral Projection. , 2015, , .		124
29	Micro-Expression Recognition Using Robust Principal Component Analysis and Local Spatiotemporal Directional Features. Lecture Notes in Computer Science, 2015, , 325-338.	1.3	38
30	Micro-Expression Recognition Using Color Spaces. IEEE Transactions on Image Processing, 2015, 24, 6034-6047.	9.8	137
31	Quantifying Micro-expressions with Constraint Local Model and Local Binary Pattern. Lecture Notes in Computer Science, 2015, , 296-305.	1.3	13
32	CASME II: An Improved Spontaneous Micro-Expression Database and the Baseline Evaluation. PLoS ONE, 2014, 9, e86041.	2.5	542
33	Micro-expression Recognition Using Dynamic Textures on Tensor Independent Color Space., 2014, , .		82
34	For micro-expression recognition: Database and suggestions. Neurocomputing, 2014, 136, 82-87.	5.9	46
35	Face Recognition and Micro-expression Recognition Based on Discriminant Tensor Subspace Analysis Plus Extreme Learning Machine. Neural Processing Letters, 2014, 39, 25-43.	3.2	157
36	A General Exponential Framework for Dimensionality Reduction. IEEE Transactions on Image Processing, 2014, 23, 920-930.	9.8	65

#	Article	IF	CITATIONS
37	An efficient diagnosis system for detection of Parkinson's disease using fuzzy k-nearest neighbor approach. Expert Systems With Applications, 2013, 40, 263-271.	7.6	235
38	CASME database: A dataset of spontaneous micro-expressions collected from neutralized faces. , 2013, , .		48
39	Fusion Tensor Subspace Transformation Framework. PLoS ONE, 2013, 8, e66647.	2.5	5
40	Sparse Tensor Discriminant Color Space for Face Verification. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23, 876-888.	11.3	107
41	Support Vector Machine Based Diagnostic System for Breast Cancer Using Swarm Intelligence. Journal of Medical Systems, 2012, 36, 2505-2519.	3.6	88
42	Incremental multi-linear discriminant analysis using canonical correlations for action recognition. Neurocomputing, 2012, 83, 56-63.	5.9	11
43	An Adaptive Fuzzy k-Nearest Neighbor Method Based on Parallel Particle Swarm Optimization for Bankruptcy Prediction. Lecture Notes in Computer Science, 2011, , 249-264.	1.3	10
44	A novel face recognition method based on sub-pattern and tensor. Neurocomputing, 2011, 74, 3553-3564.	5.9	8
45	Exponential locality preserving projections for small sample size problem. Neurocomputing, 2011, 74, 3654-3662.	5.9	44
46	Tensor Discriminant Color Space for Face Recognition. IEEE Transactions on Image Processing, 2011, 20, 2490-2501.	9.8	66
47	A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method. Knowledge-Based Systems, 2011, 24, 1348-1359.	7.1	158
48	An improved particle swarm optimization for feature selection. Journal of Bionic Engineering, 2011, 8, 191-200.	5.0	244
49	Face recognition using second-order discriminant tensor subspace analysis. Neurocomputing, 2011, 74, 2142-2156.	5.9	22
50	Matrix Exponential LPP for face recognition. , 2011, , .		0
51	A Sign Language Recognition Based on Tensor. , 2010, , .		4