
Maria Rosaria Ricciardi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6593316/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	ATM-ATR–dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood, 2009, 113, 3503-3511.	1.4	384
2	Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood, 2015, 126, 1925-1929.	1.4	154
3	MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex. Leukemia, 2012, 26, 778-787.	7.2	126
4	BCR ligation induced by IgM stimulation results in gene expression and functional changes only in IgVH unmutated chronic lymphocytic leukemia (CLL) cells. Blood, 2008, 112, 782-792.	1.4	121
5	Quantitative single cell determination of ERK phosphorylation and regulation in relapsed and refractory primary acute myeloid leukemia. Leukemia, 2005, 19, 1543-1549.	7.2	110
6	Cycling Status of CD34+ Cells Mobilized Into Peripheral Blood of Healthy Donors by Recombinant Human Granulocyte Colony-Stimulating Factor. Blood, 1997, 89, 1189-1196.	1.4	106
7	Genotoxic stress modulates the release of exosomes from multiple myeloma cells capable of activating NK cell cytokine production: Role of HSP70/TLR2/NF-kB axis. OncoImmunology, 2017, 6, e1279372.	4.6	100
8	MDR1 protein expression is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood, 2002, 100, 974-981.	1.4	99
9	Growth-Inhibitory and Antiangiogenic Activity of the MEK Inhibitor PD0325901 in Malignant Melanoma with or without BRAF Mutations. Neoplasia, 2009, 11, 720-W6.	5.3	87
10	Multiple Myeloma Impairs Bone Marrow Localization of Effector Natural Killer Cells by Altering the Chemokine Microenvironment. Cancer Research, 2015, 75, 4766-4777.	0.9	86
11	Genotoxic Stress Induces Senescence-Associated ADAM10-Dependent Release of NKC2D MIC Ligands in Multiple Myeloma Cells. Journal of Immunology, 2015, 195, 736-748.	0.8	85
12	Reactive Oxygen Species– and DNA Damage Response–Dependent NK Cell Activating Ligand Upregulation Occurs at Transcriptional Levels and Requires the Transcriptional Factor E2F1. Journal of Immunology, 2014, 193, 950-960.	0.8	81
13	The IMiDs targets IKZF-1/3 and IRF4 as novel negative regulators of NK cell-activating ligands expression in multiple myeloma. Oncotarget, 2015, 6, 23609-23630.	1.8	78
14	Overcoming resistance to molecularly targeted anticancer therapies: Rational drug combinations based on EGFR and MAPK inhibition for solid tumours and haematologic malignancies. Drug Resistance Updates, 2007, 10, 81-100.	14.4	74
15	Inhibition of bromodomain and extra-terminal (BET) proteins increases NKG2D ligand MICA expression and sensitivity to NK cell-mediated cytotoxicity in multiple myeloma cells: role of cMYC-IRF4-miR-125b interplay. Journal of Hematology and Oncology, 2016, 9, 134.	17.0	72
16	PKC α mediates chemoresistance in acute lymphoblastic leukemia through effects on Bcl2 phosphorylation. Leukemia, 2004, 18, 505-512.	7.2	69
17	Cheâ€lâ€induced inhibition of <scp>mTOR</scp> pathway enables stressâ€induced autophagy. EMBO Journal, 2015, 34, 1214-1230.	7.8	66
18	Bortezomib and zoledronic acid on angiogenic and vasculogenic activities of bone marrow macrophages in patients with multiple myeloma. European Journal of Cancer, 2010, 46, 420-429.	2.8	65

#	Article	IF	CITATIONS
19	Inhibition of Glycogen Synthase Kinase-3 Increases NKG2D Ligand MICA Expression and Sensitivity to NK Cell–Mediated Cytotoxicity in Multiple Myeloma Cells: Role of STAT3. Journal of Immunology, 2013, 190, 6662-6672.	0.8	64
20	Drug-Induced Senescent Multiple Myeloma Cells Elicit NK Cell Proliferation by Direct or Exosome-Mediated IL15 <i>Trans</i> -Presentation. Cancer Immunology Research, 2018, 6, 860-869.	3.4	59
21	The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. Journal of Molecular Medicine, 2012, 90, 667-679.	3.9	54
22	Purinergic signaling inhibits human acute myeloblastic leukemia cell proliferation, migration, and engraftment in immunodeficient mice. Blood, 2012, 119, 217-226.	1.4	52
23	Beyond Single Pathway Inhibition: MEK Inhibitors as a Platform for the Development of Pharmacological Combinations with Synergistic Anti-Leukemic Effects. Current Pharmaceutical Design, 2005, 11, 2779-2795.	1.9	48
24	ERK1/2 phosphorylation is an independent predictor of complete remission in newly diagnosed adult acute lymphoblastic leukemia. Blood, 2007, 109, 5473-5476.	1.4	46
25	MEK blockade converts AML differentiating response to retinoids into extensive apoptosis. Blood, 2007, 109, 2121-2129.	1.4	38
26	Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Scientific Reports, 2017, 7, 13663.	3.3	38
27	Co-targeting of Bcl-2 and mTOR pathway triggers synergistic apoptosis in BH3 mimetics resistant acute lymphoblastic leukemia. Oncotarget, 2015, 6, 32089-32103.	1.8	36
28	Therapeutic potential of MEK inhibition in acute myelogenous leukemia: rationale for "vertical―and "lateral―combination strategies. Journal of Molecular Medicine, 2012, 90, 1133-1144.	3.9	35
29	Targeting the Akt, GSK-3, Bcl-2 axis in acute myeloid leukemia. Advances in Biological Regulation, 2017, 65, 36-58.	2.3	33
30	MICA-129 Dimorphism and Soluble MICA Are Associated With the Progression of Multiple Myeloma. Frontiers in Immunology, 2018, 9, 926.	4.8	33
31	Aflatoxin Control in Maize by Trametes versicolor. Toxins, 2014, 6, 3426-3437.	3.4	32
32	PARP inhibitor ABT-888 affects response of MDA-MB-231 cells to doxorubicin treatment, targeting Snail expression. Oncotarget, 2015, 6, 15008-15021.	1.8	32
33	Interleukin-9 stimulates the proliferation of human myeloid leukemic cells. Blood, 1996, 87, 3852-3859.	1.4	31
34	The Activity of Differentiation Factors Induces Apoptosis in Polyomavirus Large T-Expressing Myoblasts. Molecular Biology of the Cell, 1998, 9, 1449-1463.	2.1	29
35	p38 MAPK differentially controls NK activating ligands at transcriptional and post-transcriptional level on multiple myeloma cells. Oncolmmunology, 2017, 6, e1264564.	4.6	29
36	Innate immune activating ligand SUMOylation affects tumor cell recognition by NK cells. Scientific Reports, 2017, 7, 10445.	3.3	29

#	Article	IF	CITATIONS
37	Key Role of the CD56lowCD16low Natural Killer Cell Subset in the Recognition and Killing of Multiple Myeloma Cells. Cancers, 2018, 10, 473.	3.7	29
38	The pan-class I phosphatidyl-inositol-3 kinase inhibitor NVP-BKM120 demonstrates anti-leukemic activity in acute myeloid leukemia. Scientific Reports, 2015, 5, 18137.	3.3	28
39	Reduced susceptibility to apoptosis correlates with kinetic quiescence in disease progression of chronic lymphocytic leukaemia. British Journal of Haematology, 2001, 113, 391-399.	2.5	26
40	Increased chronic lymphocytic leukemia proliferation upon IgM stimulation is sustained by the upregulation of miRâ€132 and miRâ€212. Genes Chromosomes and Cancer, 2015, 54, 222-234.	2.8	26
41	The tissue inhibitor of metalloproteinases 1 increases the clonogenic efficiency of human hematopoietic progenitor cells through CD63/PI3K/Akt signaling. Experimental Hematology, 2015, 43, 974-985.e1.	0.4	24
42	Biological Aspects of mTOR in Leukemia. International Journal of Molecular Sciences, 2018, 19, 2396.	4.1	24
43	Flt3L induces the ex-vivo amplification of umbilical cord blood committed progenitors and early stem cells in short-term cultures. British Journal of Haematology, 1999, 106, 133-141.	2.5	21
44	Bone Marrow Stromal Cell-Derived IL-8 Upregulates PVR Expression on Multiple Myeloma Cells via NF-kB Transcription Factor. Cancers, 2020, 12, 440.	3.7	21
45	Tramesan, a novel polysaccharide from Trametes versicolor. Structural characterization and biological effects. PLoS ONE, 2017, 12, e0171412.	2.5	20
46	Cell cycle regulation and induction of apoptosis by IL-6 variants on the multiple myeloma cell line XG-1. Annals of Hematology, 1999, 78, 13-18.	1.8	19
47	Metabolic Reprogramming Promotes Myogenesis During Aging. Frontiers in Physiology, 2019, 10, 897.	2.8	19
48	Activation of liver X receptor upâ€regulates the expression of the NKG2D ligands MICA and MICB in multiple myeloma through different molecular mechanisms. FASEB Journal, 2019, 33, 9489-9504.	0.5	19
49	Thrombopoietin and interleukin 11 have different modulatory effects on cell cycle and programmed cell death in primary acute myeloid leukemia cells. Experimental Hematology, 1999, 27, 1255-1263.	0.4	16
50	SIRT5 Inhibition Induces Brown Fat-Like Phenotype in 3T3-L1 Preadipocytes. Cells, 2021, 10, 1126.	4.1	16
51	A subset of chronic lymphocytic leukemia patients display reduced levels of PARP1 expression coupled with a defective irradiation-induced apoptosis. Experimental Hematology, 2012, 40, 197-206.e1.	0.4	15
52	A rare BCR-ABL1 transcript in Philadelphia-positive acute myeloid leukemia: case report and literature review. BMC Cancer, 2019, 19, 50.	2.6	15
53	Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	13
54	Effects of IL-6 Variants in Multiple Myeloma: Growth Inhibition and Induction of Apoptosis in Primary Cells. Leukemia and Lymphoma, 2002, 43, 2369-2375.	1.3	12

#	Article	IF	CITATIONS
55	Functional and kinetic characterization of granulocyte colony-stimulating factor-primed CD34â^' human stem cells. British Journal of Haematology, 2003, 123, 720-729.	2.5	12
56	Characterization of ABL1 expression in adult T-cell acute lymphoblastic leukemia by oligonucleotide array analysis. Haematologica, 2007, 92, 619-626.	3.5	12
57	The homeobox transcription factor MEIS2 is a regulator of cancer cell survival and IMiDs activity in Multiple Myeloma: modulation by Bromodomain and Extra-Terminal (BET) protein inhibitors. Cell Death and Disease, 2019, 10, 324.	6.3	11
58	Che-1/AATF-induced transcriptionally active chromatin promotes cell proliferation in multiple myeloma. Blood Advances, 2020, 4, 5616-5630.	5.2	10
59	mTOR Regulation of Metabolism in Hematologic Malignancies. Cells, 2020, 9, 404.	4.1	10
60	IgD cross-linking induces gene expression profiling changes and enhances apoptosis in chronic lymphocytic leukemia cells. Leukemia Research, 2013, 37, 455-462.	0.8	7
61	High expression levels of IP10/CXCL10 are associated with modulation of the natural killer cell compartment in multiple myeloma. Leukemia and Lymphoma, 2017, 58, 2493-2496.	1.3	6
62	Synergistic Induction of Apoptosis in Multiple Myeloma Cells by Simultaneous Inhibition of the Raf/MEK/ERK and BCL-2 Pathways. Blood, 2008, 112, 5161-5161.	1.4	4
63	Central nervous system immune reconstitution inflammatory syndrome after autologous stem cell transplantation. Bone Marrow Transplantation, 2020, 55, 268-271.	2.4	3
64	Differential proteomic profile of leukemic CD34+ progenitor cells from chronic myeloid leukemia patients. Oncotarget, 2018, 9, 21758-21769.	1.8	3
65	Thrombopoietin, Interleukin-11, and Early-Acting Megakaryocyte Growth Factors in Human Myeloid Leukemia Cells. Leukemia and Lymphoma, 2000, 40, 179-190.	1.3	2
66	Apoptosis Susceptibility and Cell-Cycle Distribution in Cells from Myelodysplastic Syndrome Patients: Modulatory In-Vitro Effects of G-CSF and Interferon-α. Leukemia and Lymphoma, 2004, 45, 1437-1443.	1.3	2
67	Protein Expression of p15 and p21 Plays an Unfavorable Prognostic Role in Adult Acute Lymphoblastic Leukemia (ALL) Patients Independently of Their Gene Promoter Methylation Status Blood, 2007, 110, 2802-2802.	1.4	2
68	The BCL-2 Antagonist ABT-737 Is Highly Effective on Primary Acute Lymphoblastic Leukemia Cells Blood, 2007, 110, 155-155.	1.4	1
69	Development of Mek inhibition (MEK-I)-Based Therapeutic Strategies in Acute Myeloid Leukemia (AML). Blood, 2008, 112, 860-860.	1.4	1
70	Bcl-2 and mTOR as Effective Targets for Molecular Therapy of Acute Lymphoblastic Leukemia. Blood, 2010, 116, 3228-3228.	1.4	1
71	Targeting Metabolic Pathways for Leukemia Treatment. Blood, 2012, 120, 1371-1371.	1.4	1
72	Abstract 350: Che-1/aatf-induced transcriptionally active chromatin promotes cell growth in multiple		1

myeloma., 2018,,.

#	Article	IF	CITATIONS
73	Molecular and Functional Effects of the Novel MEK Inhibitor PD0325901 in Preclinical Models of Human Leukemias Blood, 2006, 108, 254-254.	1.4	0
74	Functional Effects of the Bcl-2/Bcl-xL Inhibitor ABT-737 on Primary Cells from Smoldering Multiple Myeloma Blood, 2007, 110, 4782-4782.	1.4	0
75	Parallel Signaling through PI3K/AKT/mTOR Mediates Resistance to MEK Inhibition in Preclinical Models of Acute Myeloid Leukemia (AML): Synergistic Effects of Combined MEK and mTOR Inhibition Blood, 2009, 114, 594-594.	1.4	0
76	Preclinical Study to Sensitize Acute Lymphoblastic Leukemia Primary Cells by Combined mTOR and BCL-2 Inhibition with CCI-779 and ABT-737 Blood, 2009, 114, 985-985.	1.4	0
77	Pre Clinical mTOR-Inhibition of Acute Lymphoblastic Leukemia Cells Synergizes with Pro-Apoptotic Target Therapy Through Mcl-1 Down-Regulation,. Blood, 2011, 118, 3581-3581.	1.4	0
78	Proteomic Signature of CD34+ Cells From Chronic Myeloid Leukemia Patients. Blood, 2012, 120, 3733-3733.	1.4	0
79	Modulation Of The Clycolytic Metabolism In Acute Myeloid Leukemia Cells. Blood, 2013, 122, 5045-5045.	1.4	0
80	Proteomic Profile Of CD34+ Cells From Chronic Myeloid Leukemia Patients and From Normal Donors. Blood, 2013, 122, 2712-2712.	1.4	0
81	Targeting Glycolysis and MAPK Pathway: A Combined Pre-Clinical Approach on Acute Myeloid Leukemia. Blood, 2016, 128, 2751-2751.	1.4	0