Masaya Sawamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6592340/publications.pdf Version: 2024-02-01

MASAVA SAMAMIIDA

#	Article	IF	CITATIONS
1	Photoinduced Copper-Catalyzed Asymmetric Acylation of Allylic Phosphates with Acylsilanes. Journal of the American Chemical Society, 2022, 144, 2218-2224.	13.7	39
2	Visible Light-Induced Reductive Alkynylation of Aldehydes by Umpolung Approach. Organic Letters, 2022, 24, 520-524.	4.6	5
3	Insights into the Mechanism of Enantioselective Copper atalyzed Ringâ€Opening Allylic Alkylation of Cyclopropanols. Advanced Synthesis and Catalysis, 2022, 364, 1855-1862.	4.3	5
4	Silverâ€Catalyzed Asymmetric Aldol Reaction of Isocyanoacetic Acid Derivatives Enabled by Cooperative Participation of Classical and Nonclassical Hydrogen Bonds. Advanced Synthesis and Catalysis, 2022, 364, 2333-2339.	4.3	9
5	Construction of Heterobimetallic Catalytic Scaffold with a Carbene-Bipyridine Ligand: Gold–Zinc Two-Metal Catalysis for Intermolecular Addition of <i>O</i> -Nucleophiles to Nonactivated Alkynes. ACS Catalysis, 2022, 12, 8325-8330.	11.2	7
6	Photoinduced Alcoholic αâ€Câ^'H Bond Antiâ€Markovnikov Addition to Vinylphosphonium Bromides Followed by Wittig Olefination: Twoâ€Step Protocol for αâ€Câ^'H Allylic Alkylation of Alcohols. ChemCatChem, 2022, 14, .	3.7	4
7	Construction of Medium-Sized Rings by Gold Catalysis. Chemical Reviews, 2021, 121, 8926-8947.	47.7	127
8	Dumbbellâ€6haped 2,2'â€Bipyridines: Controlled Metal Monochelation and Application to Niâ€Catalyzed Crossâ€Couplings. Chemistry - A European Journal, 2021, 27, 2289-2293.	3.3	5
9	Copper-Catalyzed Reactions of Alkylboranes. Bulletin of the Chemical Society of Japan, 2021, 94, 197-203.	3.2	3
10	Phosphinylation of Nonâ€activated Aryl Fluorides through Nucleophilic Aromatic Substitution at the Boundary of Concerted and Stepwise Mechanisms. Angewandte Chemie - International Edition, 2021, 60, 5778-5782.	13.8	26
11	Phosphinylation of Nonâ€activated Aryl Fluorides through Nucleophilic Aromatic Substitution at the Boundary of Concerted and Stepwise Mechanisms. Angewandte Chemie, 2021, 133, 5842-5846.	2.0	6
12	Synthesis of 4â€Hydroxyâ€2â€pyridinone Derivatives and Evaluation of Their Antioxidant/Anticancer Activities. ChemistrySelect, 2021, 6, 1430-1439.	1.5	9
13	Use of Imidazo[1,5―a]pyridinâ€3â€ylidene as a Platform for Metalâ€Imidazole Cooperative Catalysis: Silverâ€Catalyzed Cyclization of Alkyneâ€Tethered Carboxylic Acids. Advanced Synthesis and Catalysis, 2021, 363, 1631-1637.	4.3	5
14	An Introductory Overview of C–H Bond Activation/ Functionalization Chemistry with Focus on Catalytic C(sp3)–H Bond Borylation. Kimika, 2021, 32, 70-109.	0.4	4
15	Nickel-Catalyzed Homocoupling of Aryl Ethers with Magnesium Anthracene Reductant. Synthesis, 2021, 53, 3397-3403.	2.3	6
16	A Hollow-shaped Caged Triarylphosphine: Synthesis, Characterization and Applications to Gold(I)-catalyzed 1,8-Enyne Cycloisomerization. Chemistry Letters, 2021, 50, 1236-1239.	1.3	5
17	Visible-Light-Driven α-Allylation of Carboxylic Acids. ACS Catalysis, 2021, 11, 9722-9728.	11.2	26
18	Access to Indoleâ€Fused Benzannulated Mediumâ€Sized Rings through a Gold(I)â€Catalyzed Cascade Cyclization of Azidoâ€Alkynes. Chemistry - A European Journal, 2021, 27, 12992-12997.	3.3	15

#	Article	IF	CITATIONS
19	Access to Indoleâ€Fused Benzannulated Mediumâ€Sized Rings through a Gold(I)â€Catalyzed Cascade Cyclization of Azidoâ€Alkynes. Chemistry - A European Journal, 2021, 27, 12921-12921.	3.3	0
20	Asymmetric Synthesis of α-Aminoboronates via Rhodium-Catalyzed Enantioselective C(sp ³)–H Borylation. Journal of the American Chemical Society, 2020, 142, 589-597.	13.7	67
21	Polystyrene-Cross-Linking Triphenylphosphine on a Porous Monolith: Enhanced Catalytic Activity for Aryl Chloride Cross-Coupling in Biphasic Flow. Industrial & Engineering Chemistry Research, 2020, 59, 15179-15187.	3.7	7
22	Convenient Synthesis of Binary and Fused Pyrazole Ring Systems: Accredited by Molecular Modeling and Biological Evaluation. ChemistrySelect, 2020, 5, 14917-14923.	1.5	11
23	Polystyreneâ€Supported PPh ₃ in Monolithic Porous Material: Effect of Crossâ€Linking Degree on Coordination Mode and Catalytic Activity in Pdâ€Catalyzed Câ^'C Crossâ€Coupling of Aryl Chlorides. ChemCatChem, 2020, 12, 4034-4037.	3.7	9
24	Iridiumâ€Catalyzed Enantioselective Transfer Hydrogenation of Ketones Controlled by Alcohol Hydrogenâ€Bonding and sp 3 â€Câ^'H Noncovalent Interactions. Advanced Synthesis and Catalysis, 2020, 362, 4655-4661.	4.3	15
25	Ir-Catalyzed Reversible Acceptorless Dehydrogenation/Hydrogenation of N-Substituted and Unsubstituted Heterocycles Enabled by a Polymer-Cross-Linking Bisphosphine. Organic Letters, 2020, 22, 5240-5245.	4.6	25
26	Copper-catalyzed enantioselective conjugate reduction of α,β-unsaturated esters with chiral phenol–carbene ligands. Beilstein Journal of Organic Chemistry, 2020, 16, 537-543.	2.2	5
27	The Scope of 3-acetyl-4-hydroxy-6-methyl-2H-pyran-2-one (DHA). Current Organic Chemistry, 2020, 24, 1459-1490.	1.6	6
28	5 anti Boron Addition to Alkynes. , 2020, , .		0
29	Iridium-Catalyzed Alkene-Selective Transfer Hydrogenation with 1,4-Dioxane as Hydrogen Donor. Organic Letters, 2019, 21, 5867-5872.	4.6	22
30	Boron-Catalyzed α-Amination of Carboxylic Acids. Organic Letters, 2019, 21, 7466-7469.	4.6	20
31	Nickel-Catalyzed Decarboxylation of Aryl Carbamates for Converting Phenols into Aromatic Amines. Journal of the American Chemical Society, 2019, 141, 7261-7265.	13.7	41
32	Nickelâ€Copperâ€Catalyzed Hydroacylation of Vinylarenes with Acyl Fluorides and Hydrosilanes. Chemistry - A European Journal, 2019, 25, 9410-9414.	3.3	24
33	Iridium-Catalyzed Asymmetric Borylation of Unactivated Methylene C(sp ³)–H Bonds. Journal of the American Chemical Society, 2019, 141, 6817-6821.	13.7	79
34	Heterogeneous Nickelâ€Catalyzed Crossâ€Coupling between Aryl Chlorides and Alkyllithiums Using a Polystyreneâ€Crossâ€Linking Bisphosphine Ligand. Advanced Synthesis and Catalysis, 2019, 361, 2250-2254.	4.3	14
35	Asymmetric Synthesis of α-Alkylidene-β-Lactams through Copper Catalysis with a Prolinol-Phosphine Chiral Ligand. Organic Letters, 2019, 21, 1717-1721.	4.6	16
36	A Polystyreneâ€Crossâ€Linking Tricyclohexylphosphine: Synthesis, Characterization and Applications to Pdâ€Catalyzed Crossâ€Coupling Reactions of Aryl Chlorides. Chemistry - an Asian Journal, 2019, 14, 411-415.	3.3	9

Masaya Sawamura

#	Article	IF	CITATIONS
37	Copper-catalyzed Enantioselective Intramolecular Alkylboron Allylic Alkylation. Chemistry Letters, 2018, 47, 632-635.	1.3	6
38	Phosphine-Catalyzed <i>Anti</i> -Hydroboration of Internal Alkynes. Organic Letters, 2018, 20, 1861-1865.	4.6	73
39	Enantiocontrol by assembled attractive interactions in copper-catalyzed asymmetric direct alkynylation of α-ketoesters with terminal alkynes: OHâ <o sp<sup="">3-CHâ<o hydrogen<br="" two-point="">bonding combined with dispersive attractions. Chemical Science, 2018, 9, 3484-3493.</o></o>	7.4	43
40	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie - International Edition, 2018, 57, 3196-3199.	13.8	42
41	Phosphineâ€Catalyzed <i>anti</i> â€Carboboration of Alkynoates with 9â€BBNâ€Based 1,1â€Diborylalkanes: Synthesis and Use of Multisubstituted γâ€Borylallylboranes. Angewandte Chemie, 2018, 130, 3250-3253.	2.0	15
42	Copper-Catalyzed Enantioselective Coupling between AllylÂboronates and Phosphates Using a Phenol–Carbene Chiral Ligand: Asymmetric Synthesis of Chiral Branched 1,5-Dienes. Synthesis, 2018, 50, 2235-2246.	2.3	11
43	Nickel-catalyzed amination of aryl fluorides with primary amines. Chemical Communications, 2018, 54, 1718-1721.	4.1	43
44	Synthesis of Cyclobuteneâ€Fused Eightâ€Membered Carbocycles through Goldâ€Catalyzed Intramolecular Enyne [2+2] Cycloaddition. Advanced Synthesis and Catalysis, 2018, 360, 670-675.	4.3	30
45	<i>>P</i> , <i>P</i> , <i>P</i> , <i>P</i> ′, <i>P</i> ′-Tetraethynylated Bisphosphine and P-C-P Pincer Ligands with Bulky End Caps: Synthesis, Coordination Properties and Application to Platinum-catalyzed 1,8-Enyne Cycloisomerization. Chemistry Letters, 2018, 47, 1162-1164.	1.3	2
46	Palladium atalyzed Asymmetric C(sp ³)â^'H Allylation of 2â€Alkylpyridines. Angewandte Chemie - International Edition, 2018, 57, 9465-9469.	13.8	55
47	Palladiumâ€Catalyzed Asymmetric C(sp ³)â^'H Allylation of 2â€Alkylpyridines. Angewandte Chemie, 2018, 130, 9609-9613.	2.0	22
48	Synthesis, Properties, and Catalytic Application of a Triptycene-Type Borate-Phosphine Ligand. Organometallics, 2018, 37, 1876-1883.	2.3	41
49	A Polystyrene-Cross-Linking Bisphosphine: Controlled Metal Monochelation and Ligand-Enabled First-Row Transition Metal Catalysis. ACS Catalysis, 2017, 7, 1681-1692.	11.2	65
50	Synthesis of $\hat{l}\pm$ -Quaternary Formimides and Aldehydes through Umpolung Asymmetric Copper Catalysis with Isocyanides. Journal of the American Chemical Society, 2017, 139, 2184-2187.	13.7	57
51	Asymmetric Synthesis of βâ€Lactams through Copperâ€Catalyzed Alkyne–Nitrone Coupling with a Prolinol–Phosphine Chiral Ligand. Chemistry - A European Journal, 2017, 23, 8400-8404.	3.3	35
52	Exploring the full catalytic cycle of rhodium(<scp>i</scp>)–BINAP-catalysed isomerisation of allylic amines: a graph theory approach for path optimisation. Chemical Science, 2017, 8, 4475-4488.	7.4	26
53	Polystyrene-Cross-Linking <i>Ortho</i> -Substituted Triphenylphosphines: Synthesis, Coordination Properties, and Application to Pd-Catalyzed Cross-Coupling of Aryl Chlorides. Bulletin of the Chemical Society of Japan, 2017, 90, 943-949.	3.2	9
54	Construction of Quaternary Stereogenic Carbon Centers through Copper atalyzed Enantioselective Allylic Alkylation of Azoles. Angewandte Chemie, 2016, 128, 4855-4858.	2.0	20

MASAYA SAWAMURA

#	Article	IF	CITATIONS
55	Synthesis, Coordination Properties, and Catalytic Application of Triarylmethane-Monophosphines. Organometallics, 2016, 35, 3959-3969.	2.3	19
56	Site-Selective and Stereoselective C(sp3)–H Borylation of Alkyl Side Chains of 1,3-Azoles with a Silica-Supported Monophosphine-Iridium Catalyst. Synlett, 2016, 27, 1187-1192.	1.8	15
57	Copperâ€Catalyzed Enantioselective Allyl–Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/Nâ€Heterocyclic Carbene Chiral Ligand. Angewandte Chemie - International Edition, 2016, 55, 10816-10820.	13.8	68
58	Copper atalyzed Enantioselective Allyl–Allyl Coupling between Allylic Boronates and Phosphates with a Phenol/Nâ€Heterocyclic Carbene Chiral Ligand. Angewandte Chemie, 2016, 128, 10974-10978.	2.0	14
59	Construction of Quaternary Stereogenic Carbon Centers through Copperâ€Catalyzed Enantioselective Allylic Alkylation of Azoles. Angewandte Chemie - International Edition, 2016, 55, 4777-4780.	13.8	65
60	Copper-Catalyzed Semihydrogenation of Internal Alkynes with Molecular Hydrogen. Organometallics, 2016, 35, 1354-1357.	2.3	60
61	Phosphine-Catalyzed Vicinal Acylcyanation of Alkynoates. Organic Letters, 2016, 18, 1706-1709.	4.6	26
62	Synthesis of 1,1â€Ðiborylalkenes through a BrÃ,nsted Base Catalyzed Reaction between Terminal Alkynes and Bis(pinacolato)diboron. Angewandte Chemie - International Edition, 2015, 54, 15859-15862.	13.8	85
63	Copperâ€Catalyzed γâ€Selective and Stereospecific Allylic Crossâ€Coupling with Secondary Alkylboranes. Chemistry - A European Journal, 2015, 21, 9666-9670.	3.3	15
64	Copper-catalyzed stereoselective conjugate addition of alkylboranes to alkynoates. Beilstein Journal of Organic Chemistry, 2015, 11, 2444-2450.	2.2	9
65	<i>Anti</i> -Selective Vicinal Silaboration and Diboration of Alkynoates through Phosphine Organocatalysis. Organic Letters, 2015, 17, 1304-1307.	4.6	124
66	Transition-Metal-Catalyzed Site-Selective C–H Functionalization of Quinolines beyond C2 Selectivity. ACS Catalysis, 2015, 5, 5031-5040.	11.2	206
67	Copper-catalyzed enantioselective allylic cross-coupling with alkylboranes. Tetrahedron, 2015, 71, 6519-6533.	1.9	14
68	Copper(I)-Catalyzed Intramolecular Hydroalkoxylation of Unactivated Alkenes. Organic Letters, 2015, 17, 2039-2041.	4.6	51
69	Silica-Supported Triptycene-Type Phosphine. Synthesis, Characterization, and Application to Pd-Catalyzed Suzuki–Miyaura Cross-Coupling of Chloroarenes. ACS Catalysis, 2015, 5, 7254-7264.	11.2	27
70	Synthesis and structures of a chiral phosphine–phosphoric acid ligand and its rhodium(I) complexes. Tetrahedron: Asymmetry, 2015, 26, 1245-1250.	1.8	6
71	Copper-Catalyzed Allylic Substitution and Conjugate Addition with Alkylboranes. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2014, 72, 1207-1217.	0.1	3
72	Highâ€Đensity Monolayers of Metal Complexes: Preparation and Catalysis. Chemical Record, 2014, 14, 869-878.	5.8	2

#	Article	IF	CITATIONS
73	Silicaâ€Supported Tripod Triarylphosphane: Application to Transition Metalâ€Catalyzed C(<i>sp</i> ³)H Borylations. Advanced Synthesis and Catalysis, 2014, 356, 1563-1570.	4.3	33
74	Phosphine-Catalyzed <i>Anti</i> -Carboboration of Alkynoates with Alkyl-, Alkenyl-, and Arylboranes. Journal of the American Chemical Society, 2014, 136, 10605-10608.	13.7	83
75	Siteâ€Selective CH Borylation of Quinolines at the C8 Position Catalyzed by a Silicaâ€Supported Phosphane–Iridium System. Chemistry - an Asian Journal, 2014, 9, 434-438.	3.3	97
76	Stereoselective Ci£¿H Borylations of Cyclopropanes and Cyclobutanes with Silica upported Monophosphane–Ir Catalysts. Chemistry - A European Journal, 2014, 20, 13127-13131.	3.3	72
77	Copper-Catalyzed Enantioselective Allylic Alkylation of Terminal Alkyne Pronucleophiles. Journal of the American Chemical Society, 2014, 136, 13932-13939.	13.7	94
78	Tripod Immobilization of Triphenylphosphane on a Silicaâ€Gel Surface to Enable Selective Monoâ€Ligation to Palladium: Application to Suzuki–Miyaura Cross oupling Reactions with Chloroarenes. Chemistry - A European Journal, 2014, 20, 1057-1065.	3.3	28
79	Transition-Metal Catalysis with Hollow-Shaped Triethynylphosphine Ligands. Bulletin of the Chemical Society of Japan, 2014, 87, 1147-1160.	3.2	14
80	Silica-supported Tripod Triarylphosphines: Application to Palladium-catalyzed Borylation of Chloroarenes. Chemistry Letters, 2014, 43, 584-586.	1.3	19
81	Construction of Quaternary Stereogenic Carbon Centers through Copperâ€Catalyzed Enantioselective Allylic Crossâ€Coupling with Alkylboranes. Angewandte Chemie - International Edition, 2014, 53, 4954-4958.	13.8	64
82	Synthesis of Trisubstituted Alkenylstannanes through Copperâ€Catalyzed Threeâ€Component Coupling of Alkylboranes, Alkynoates, and Tributyltin Methoxide. Angewandte Chemie - International Edition, 2013, 52, 11620-11623.	13.8	22
83	Cooperative Catalysis of Metal and OHâ‹â‹O/sp ³ â€CHâ‹â‹ô‹O Twoâ€Point Hydrog Alcoholic Solvents: Cuâ€Catalyzed Enantioselective Direct Alkynylation of Aldehydes with Terminal Alkynes. Chemistry - A European Journal, 2013, 19, 13547-13553.	en Bonds 3.3	in 45
84	Threefold Crossâ€Linked Polystyrene–Triphenylphosphane Hybrids: Monoâ€Pâ€Ligating Behavior and Catalytic Applications for Aryl Chloride Crossâ€Coupling and C(sp ³)H Borylation. Angewandte Chemie - International Edition, 2013, 52, 12322-12326.	13.8	88
85	Synthesis of Primary and Secondary Alkylboronates through Site-Selective C(sp ³)–H Activation with Silica-Supported Monophosphine–Ir Catalysts. Journal of the American Chemical Society, 2013, 135, 2947-2950.	13.7	122
86	Construction of Eightâ€Membered Carbocycles through Gold Catalysis with Acetyleneâ€Tethered Silyl Enol Ethers. Angewandte Chemie - International Edition, 2013, 52, 4239-4242.	13.8	75
87	Copper atalyzed γ‣elective and Stereospecific Direct Allylic Alkylation of Terminal Alkynes: Synthesis of Skipped Enynes. Angewandte Chemie - International Edition, 2013, 52, 5350-5354.	13.8	54
88	Synthesis of a chiral N-heterocyclic carbene bearing a m-terphenyl-based phosphate moiety as an anionic N-substituent and its application to copper-catalyzed enantioselective boron conjugate additions. Tetrahedron: Asymmetry, 2013, 24, 729-735.	1.8	30
89	Use of a Semihollowâ€Shaped Triethynylphosphane Ligand for Efficient Formation of Six―and Sevenâ€Membered Ring Ethers through Gold(I)â€Catalyzed Cyclization of Hydroxyâ€Tethered Propargylic Esters. Advanced Synthesis and Catalysis, 2013, 355, 647-652.	4.3	21
90	Functional Group Tolerable Synthesis of Allylsilanes through Copper-Catalyzed Î ³ -Selective Allyl-Alkyl Coupling between Allylic Phosphates and Alkylboranes. Synthesis, 2012, 44, 1535-1541.	2.3	15

#	Article	IF	CITATIONS
91	Conjugate Reduction of α,βâ€Unsaturated Carbonyl and Carboxyl Compounds with Poly(methylhydrosiloxane) Catalyzed by a Silicaâ€Supported Compact Phosphane–Copper Complex. Advanced Synthesis and Catalysis, 2012, 354, 3440-3444.	4.3	11
92	Copper-Catalyzed Enantioselective Allylic Substitution with Alkylboranes. Journal of the American Chemical Society, 2012, 134, 18573-18576.	13.7	90
93	Synthesis of Allenylsilanes through Copper-Catalyzed γ-Selective Coupling between γ-Silylated Propargylic Phosphates and Alkylboranes. Organometallics, 2012, 31, 7909-7913.	2.3	25
94	Synthesis of Conjugated Allenes through Copper-Catalyzed γ-Selective and Stereospecific Coupling between Propargylic Phosphates and Aryl- or Alkenylboronates. Organic Letters, 2012, 14, 816-819.	4.6	96
95	Reversible 1,3-anti/syn-Stereochemical Courses in Copper-Catalyzed γ-Selective Allyl–Alkyl Coupling between Chiral Allylic Phosphates and Alkylboranes. Journal of the American Chemical Society, 2012, 134, 8982-8987.	13.7	68
96	Enantioselective Conjugate Addition of Alkylboranes Catalyzed by a Copper– <i>N</i> -Heterocyclic Carbene Complex. Journal of the American Chemical Society, 2012, 134, 11896-11899.	13.7	96
97	Regio―and Stereocontrolled Introduction of Secondary Alkyl Groups to Electronâ€Deficient Arenes through Copperâ€Catalyzed Allylic Alkylation. Angewandte Chemie - International Edition, 2012, 51, 4122-4127.	13.8	120
98	Rh-Catalyzed Borylation of N-Adjacent C(sp ³)–H Bonds with a Silica-Supported Triarylphosphine Ligand. Journal of the American Chemical Society, 2012, 134, 12924-12927.	13.7	158
99	Copper(I)â€Catalyzed Allylic Substitution of Silyl Nucleophiles through SiSi Bond Activation. Advanced Synthesis and Catalysis, 2012, 354, 813-817.	4.3	37
100	Practical procedure for copper(I)-catalyzed allylic boryl substitution with stoichiometric alkoxide base. Tetrahedron, 2012, 68, 3423-3427.	1.9	36
101	Copper-Catalyzed γ-Selective and Stereospecific Allylic Alkylation of Ketene Silyl Acetals. Journal of the American Chemical Society, 2011, 133, 5672-5675.	13.7	32
102	General Approach to Allenes through Copper-Catalyzed Î ³ -Selective and Stereospecific Coupling between Propargylic Phosphates and Alkylboranes. Organic Letters, 2011, 13, 6312-6315.	4.6	100
103	Copper-Catalyzed Conjugate Additions of Alkylboranes to Imidazolyl α,β-Unsaturated Ketones: Formal Reductive Conjugate Addition of Terminal Alkenes. Organic Letters, 2011, 13, 482-485.	4.6	41
104	Copper-Catalyzed Carboxylation of Alkylboranes with Carbon Dioxide: Formal Reductive Carboxylation of Terminal Alkenes. Organic Letters, 2011, 13, 1086-1088.	4.6	124
105	Sulfonamidoquinoline/Palladium(II)â€Dimer Complex As a Catalyst Precursor for Palladiumâ€Catalyzed γâ€5elective and Stereospecific Allyl–Aryl Coupling Reaction between Allylic Acetates and Arylboronic Acids. Chemistry - an Asian Journal, 2011, 6, 410-414.	3.3	38
106	Rh-Catalyzed <i>Ortho</i> -Selective C–H Borylation of <i>N</i> -Functionalized Arenes with Silica-Supported Bridgehead Monophosphine Ligands. Journal of the American Chemical Society, 2011, 133, 19310-19313.	13.7	160
107	Intramolecular hydroamination of alkynic sulfonamides catalyzed by a gold–triethynylphosphine complex: Construction of azepine frameworks by 7- <i>exo</i> - <i>dig</i> cyclization. Beilstein Journal of Organic Chemistry, 2011, 7, 951-959.	2.2	39
108	Copper-catalyzed Conjugate Additions of Alkylboranes to Aryl α,β-Unsaturated Ketones. Chemistry Letters, 2011, 40, 928-930.	1.3	23

#	Article	IF	CITATIONS
109	Palladium atalyzed Borylation of Sterically Demanding Aryl Halides with a Silicaâ€Supported Compact Phosphane Ligand. Angewandte Chemie - International Edition, 2011, 50, 8363-8366.	13.8	96
110	Inside Cover: Palladium-Catalyzed Borylation of Sterically Demanding Aryl Halides with a Silica-Supported Compact Phosphane Ligand (Angew. Chem. Int. Ed. 36/2011). Angewandte Chemie - International Edition, 2011, 50, 8200-8200.	13.8	0
111	Desymmetrization of <i>meso</i> â€2â€Alkeneâ€1,4â€diol Derivatives through Copper(I)â€Catalyzed Asymmetric Boryl Substitution and Stereoselective Allylation of Aldehydes. Angewandte Chemie - International Edition, 2010, 49, 560-563.	с 13.8	107
112	Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nature Chemistry, 2010, 2, 972-976.	13.6	189
113	Construction of Methylenecycloheptane Frameworks through 7 <i>-Exo-Dig</i> Cyclization of Acetylenic Silyl Enol Ethers Catalyzed by Triethynylphosphineâ^Gold Complex. Organic Letters, 2010, 12, 4380-4383.	4.6	59
114	Palladium-Catalyzed Î ³ -Selective and Stereospecific Allylâ^'Aryl Coupling between Acyclic Allylic Esters and Arylboronic Acids. Journal of the American Chemical Society, 2010, 132, 879-889.	13.7	140
115	Copper-Catalyzed γ-Selective Allylâ^'Alkyl Coupling between Allylic Phosphates and Alkylboranes. Journal of the American Chemical Society, 2010, 132, 2895-2897.	13.7	106
116	Stereospecific Synthesis of Cyclobutylboronates through Copper(I)-Catalyzed Reaction of Homoallylic Sulfonates and a Diboron Derivative. Journal of the American Chemical Society, 2010, 132, 5990-5992.	13.7	178
117	Synthesis of α-Arylated Allylsilanes through Palladium-Catalyzed γ-Selective Allylâ^'Aryl Coupling. Organic Letters, 2010, 12, 3344-3347.	4.6	62
118	Ester-Directed Regioselective Borylation of Heteroarenes Catalyzed by a Silica-Supported Iridium Complex. Journal of Organic Chemistry, 2010, 75, 3855-3858.	3.2	91
119	Copper-Catalyzed γ-Selective and Stereospecific Allylâ^'Aryl Coupling between (<i>Z</i>)-Acyclic and Cyclic Allylic Phosphates and Arylboronates. Organic Letters, 2010, 12, 2438-2440.	4.6	89
120	Directed Ortho Borylation of Phenol Derivatives Catalyzed by a Silica-Supported Iridium Complex. Organic Letters, 2010, 12, 3978-3981.	4.6	121
121	Enantioselective Synthesis of <i>trans</i> -Aryl- and -Heteroaryl-Substituted Cyclopropylboronates by Copper(I)-Catalyzed Reactions of Allylic Phosphates with a Diboron Derivative. Journal of the American Chemical Society, 2010, 132, 11440-11442.	13.7	204
122	Air-Stable, Compact, Caged Trialkylphosphines (SMAPs): Synthesis, Properties and Applications to Homogeneous and Heterogeneous Catalysis. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2009, 67, 1125-1135.	0.1	4
123	General and Functional Group-Tolerable Approach to Allenylsilanes by Rhodium-Catalyzed Coupling between Propargylic Carbonates and a Silylboronate. Organic Letters, 2009, 11, 5618-5620.	4.6	71
124	Directed Ortho Borylation of Functionalized Arenes Catalyzed by a Silica-Supported Compact Phosphineâ^'Iridium System. Journal of the American Chemical Society, 2009, 131, 5058-5059.	13.7	273
125	Cu(I)-Catalyzed Intramolecular Hydroamination of Unactivated Alkenes Bearing a Primary or Secondary Amino Group in Alcoholic Solvents. Organic Letters, 2009, 11, 2145-2147.	4.6	113
126	Gold(I) Hydride Intermediate in Catalysis: Dehydrogenative Alcohol Silylation Catalyzed by Gold(I) Complex. Organometallics, 2009, 28, 4829-4840.	2.3	106

#	Article	IF	CITATIONS
127	Selfâ€Assembled Monolayers of Compact Phosphanes with Alkanethiolate Pendant Groups: Remarkable Reusability and Substrate Selectivity in Rh Catalysis. Angewandte Chemie - International Edition, 2008, 47, 5627-5630.	13.8	45
128	Synthesis of Optically Active Boron–Silicon Bifunctional Cyclopropane Derivatives through Enantioselective Copper(I) atalyzed Reaction of Allylic Carbonates with a Diboron Derivative. Angewandte Chemie - International Edition, 2008, 47, 7424-7427.	13.8	219
129	Synthesis of Silica-Supported Compact Phosphines and Their Application to Rhodium-Catalyzed Hydrosilylation of Hindered Ketones with Triorganosilanes. Organometallics, 2008, 27, 6495-6506.	2.3	47
130	Enantioselective Addition of Terminal Alkynes to Aromatic Aldehydes Catalyzed by Copper(I) Complexes with Wide-Bite-Angle Chiral Bisphosphine Ligands: Optimization, Scope, and Mechanistic Studies. Organometallics, 2008, 27, 5984-5996.	2.3	48
131	Palladium-Catalyzed γ-Selective and Stereospecific Allylâ^'Aryl Coupling between Allylic Acetates and Arylboronic Acids. Journal of the American Chemical Society, 2008, 130, 17276-17277.	13.7	147
132	Cyclization of Nonterminal Alkynic β-Keto Esters Catalyzed by Gold(I) Complex with a Semihollow, End-Capped Triethynylphosphine Ligand. Organic Letters, 2008, 10, 5051-5054.	4.6	61
133	Conductance of Single 1,4-Benzenediamine Molecule Bridging between Au and Pt Electrodes. Journal of Physical Chemistry C, 2008, 112, 13349-13352.	3.1	63
134	Hydrogenation of Hindered Ketones Catalyzed by a Silica-Supported Compact Phosphineâ^'Rh System. Organic Letters, 2008, 10, 4697-4700.	4.6	20
135	Synthesis, Properties, and Catalytic Applications of Caged, Compact Trialkylphosphine 4-Phenyl-1-phospha-4-silabicyclo[2.2.2]octane. Organometallics, 2008, 27, 5494-5503.	2.3	31
136	Copper(I)-Catalyzed Substitution of Propargylic Carbonates with Diboron: Selective Synthesis of Multisubstituted Allenylboronates. Journal of the American Chemical Society, 2008, 130, 15774-15775.	13.7	185
137	Copper-catalyzed substitution of allylic carbonates with diboron: A new approach to allylboronate synthesis. Pure and Applied Chemistry, 2008, 80, 1039-1045.	1.9	26
138	Conductance of single 1,4-disubstituted benzene molecules anchored to Pt electrodes. Applied Physics Letters, 2007, 91, .	3.3	65
139	Functionalization of silicon surfaces with catalytically active Pd complexes and application to the aerobic oxidation of benzylic alcohols. Chemical Communications, 2007, , 4280.	4.1	32
140	Copper-Catalyzed Enantioselective Substitution of Allylic Carbonates with Diboron:  An Efficient Route to Optically Active α-Chiral Allylboronates. Journal of the American Chemical Society, 2007, 129, 14856-14857.	13.7	277
141	Enantioselective Addition of Terminal Alkynes to Aldehydes Catalyzed by a Cu(I)â^'TRAP Complex. Organic Letters, 2007, 9, 3901-3904.	4.6	89
142	Monocoordinating, Compact Phosphane Immobilized on Silica Surface: Application to Rhodium-Catalyzed Hydrosilylation of Hindered Ketones. Angewandte Chemie - International Edition, 2007, 46, 5381-5383.	13.8	60
143	Phosphorus Ligands with a Large Cavity: Synthesis of Triethynylphosphines with Bulky End Caps and Application to the Rhodium-Catalyzed Hydrosilylation of Ketones. Chemistry - an Asian Journal, 2007, 2, 609-618.	3.3	41
144	Design and Synthesis of Isocyanide Ligands for Catalysis: Application to Rhâ€Catalyzed Hydrosilylation of Ketones. Chemistry - an Asian Journal, 2007, 2, 1436-1446.	3.3	21

Masaya Sawamura

#	Article	IF	CITATIONS
145	Construction of self-assembled monolayer terminated with N-heterocyclic carbene–rhodium(I) complex moiety. Surface Science, 2007, 601, 5127-5132.	1.9	15
146	Using Triethynylphosphine Ligands Bearing Bulky End Caps To Create a Holey Catalytic Environment:Â Application to Gold(I)-Catalyzed Alkyne Cyclizations. Journal of the American Chemical Society, 2006, 128, 16486-16487.	13.7	141
147	Cyclic Diaminocarbene–Rhodium(I) Complex Tethered to Disulfide: Synthesis and Application to Gold Surface Modification. Chemistry Letters, 2006, 35, 870-871.	1.3	5
148	Synthesis of New Bulky Isocyanide Ligands and Their Use for Rh-catalyzed Hydrosilylation. Chemistry Letters, 2006, 35, 1038-1039.	1.3	20
149	Electronically Tunable Compact Trialkylphosphines: SMAPs-bridged Bicyclic Phosphines. Chemistry Letters, 2006, 35, 294-295.	1.3	40
150	Conductance of a single molecule anchored by an isocyanide substituent to gold electrodes. Applied Physics Letters, 2006, 89, 213104.	3.3	94
151	Copper-Catalyzed Î ³ -Selective and Stereospecific Substitution Reaction of Allylic Carbonates with Diboron:Â Efficient Route to Chiral Allylboron Compounds. Journal of the American Chemical Society, 2005, 127, 16034-16035.	13.7	212
152	Versatile Dehydrogenative Alcohol Silylation Catalyzed by Cu(I)â^'Phosphine Complex. Organic Letters, 2005, 7, 1869-1871.	4.6	71
153	Nickel, Palladium, and Platinum Complexes of η5-Cyclopentadienide C60R5Ligands. Kinetic and Thermodynamic Stabilization Effects of the C60Ph5Ligand. Organometallics, 2004, 23, 3259-3266.	2.3	61
154	Nonvolatile Me3P-likeP-Donor Ligand:  Synthesis and Properties of 4-Phenyl-1-phospha-4-silabicyclo[2.2.2]octane. Organic Letters, 2003, 5, 2671-2674.	4.6	45
155	Hybrid of Ferrocene and Fullerene. Journal of the American Chemical Society, 2002, 124, 9354-9355.	13.7	164
156	Cu(i)-mediated regioselective tri-addition of Grignard reagent to [70]fullerene. Synthesis of indenyl-type metal ligand embedded into graphitic structure. Journal of Materials Chemistry, 2002, 12, 2109-2115.	6.7	29
157	Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature, 2002, 419, 702-705.	27.8	398
158	Spherical Bilayer Vesicles of Fullerene-Based Surfactants in Water: A Laser Light Scattering Study. Science, 2001, 291, 1944-1947.	12.6	395
159	Chemistry of î-5-fullerene metal complexes. Pure and Applied Chemistry, 2001, 73, 355-359.	1.9	62
160	Stepwise Synthesis of Fullerene Cyclopentadienide R5C60-and Indenide R3C60 An Approach to Fully Unsymmetrically Substituted Derivatives. Organic Letters, 2000, 2, 1919-1921.	4.6	43
161	Half-Sandwich Metallocene Embedded in a Spherically Extended π-Conjugate System. Synthesis, Structure, and Electrochemistry of Rh(η5-C60Me5)(CO)2. Journal of the American Chemical Society, 2000, 122, 12407-12408.	13.7	67
162	Optical Resolution of Chirally Functionalized [60]Fullerene Through Formation of Diastereomeric Methoxyphenylacetic Acid Esters. Fullerenes, Nanotubes, and Carbon Nanostructures, 1999, 7, 519-528.	0.6	7

MASAYA SAWAMURA

#	Article	IF	CITATIONS
163	Synthesis of π-Indenyl-type Fullerene Ligand and Its Metal Complexes via Quantitative Trisarylation of C70. Journal of the American Chemical Society, 1998, 120, 8285-8286.	13.7	83
164	Synthetic and Computational Studies on Symmetry-Defined Double Cycloaddition of a New Tris-Annulating Reagent to C60. Journal of Organic Chemistry, 1997, 62, 5034-5041.	3.2	61
165	An Enantioselective Two-Component Catalyst System:Â Rhâ^'Pd-Catalyzed Allylic Alkylation of Activated Nitriles. Journal of the American Chemical Society, 1996, 118, 3309-3310.	13.7	278
166	The First Pentahaptofullerene Metal Complexes. Journal of the American Chemical Society, 1996, 118, 12850-12851.	13.7	271
167	Enantioselective Cycloisomerization of 1,6-Enynes Catalyzed by Chiral Diphosphane–Palladium Complexes. Angewandte Chemie International Edition in English, 1996, 35, 662-663.	4.4	92
168	Synthesis and Structures of Trans-Chelating Chiral Diphosphine Ligands Bearing Aromatic P-Substituents, (S,S)-(R,R)- and (R,R)-(S,S)-2,2''-Bis[1-(diarylphosphino)ethyl]-1,1''-biferrocene (ArylTRAPs) and Their Transition Metal Complexes. Organometallics, 1995, 14, 4549-4558.	2.3	132
169	Gold(I)-Catalyzed Asymmetric Aldol Reaction of N-Methoxy-N-methylalphaisocyanoacetamide (.alphaIsocyano Weinreb Amide). An Efficient Synthesis of Optically Active .betaHydroxy .alphaAmino Aldehydes and Ketones. Journal of Organic Chemistry, 1995, 60, 1727-1732.	3.2	120
170	Asymmetric synthesis catalyzed by chiral ferrocenylphosphine transition metal complexes. 10 gold(i)-catalyzed asymmetric aldol reaction of isocyanoacetate. Tetrahedron, 1992, 48, 1999-2012.	1.9	143
171	Catalytic asymmetric synthesis by means of secondary interaction between chiral ligands and substrates. Chemical Reviews, 1992, 92, 857-871.	47.7	439
172	Silver(I)-catalyzed asymmetric aldol reaction of isocyanoacetate. Tetrahedron Letters, 1991, 32, 2799-2802.	1.4	113
173	A trans-chelating chiral diphosphine ligand: Synthesis of 2,2″-bis[1-(diphenylphosphino)ethyl]-1,1″-biferrocene and its complexes with platinum(II) and palladium(II). Tetrahedron: Asymmetry, 1991, 2, 593-596.	1.8	123
174	The asymmetric aldol reaction of tosylmethyl isocyanide and aldehydes catalyzed by chiral silver(I) complexes. Journal of Organic Chemistry, 1990, 55, 5935-5936.	3.2	99
175	Asymmetric aldol reaction of α-ketoesters with isocyanoacetate and isocyanoacetamide catalyzed by a chiral ferrocenylphosphine-gold(I) complex. Tetrahedron Letters, 1989, 30, 4681-4684.	1.4	73
176	Asymmetric Synthesis of (1-Aminoalkyl)phosphonic Acids via Asymmetric Aldol Reaction of (Isocyanomethyl)phosphonates Catalyzed by a Chiral Ferrocenylphosphine-Gold(I) Complex. Tetrahedron Letters, 1989, 30, 2247-2250.	1.4	121
177	Asymmetric synthesis of threo- and erythro-sphingosines by asymmetric aldol reaction of α-isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. Tetrahedron Letters, 1988, 29, 239-240.	1.4	103
178	Asymmetric aldol reaction of Î \pm -isocyanoacetamides with aldehydes catalyzed by a chiral ferrocenylphosphine-gold(I) complex. Tetrahedron Letters, 1988, 29, 6321-6324.	1.4	76
179	Asymmetric aldol reaction of an isocyanoacetate with aldehydes bychiral ferrocenylphosphine-gold(I) complexes: Design and preparation of new efficient ferrocenylphosphine ligands. Tetrahedron Letters, 1987, 28, 6215-6218.	1.4	146
180	Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine-gold(I) complex. Journal of the American Chemical Society, 1986, 108, 6405-6406.	13.7	741

0

181 Synthesis of C,N,N-Cyclometalated Gold(III) Complexes with Anionic Amide Ligands. Synlett, 0, , . 1.8 1	#	Article	IF	CITATIONS
	181	Synthesis of C,N,N-Cyclometalated Gold(III) Complexes with Anionic Amide Ligands. Synlett, 0, , .	1.8	1

Asymmetric Hydrogenation of Alkenes, Enones, Ene-Esters and Ene-Acids. , 0, , 35-86.