Brendan O'Leary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6592272/publications.pdf Version: 2024-02-01

RDENDAN O'LEADY

#	Article	IF	CITATIONS
1	High-Throughput Oxygen Consumption Measurements in Leaf Tissue Using Oxygen Sensitive Fluorophores. Methods in Molecular Biology, 2022, 2363, 63-75.	0.9	3
2	Survival or starvation: SnRK1 controls rate of resource use in pre-photosynthetic seedlings. Plant Cell, 2022, 34, 501-502.	6.6	0
3	Guarding the gates: TOR mediates guard cell starch degradation to control stomatal opening. Plant Cell, 2022, 34, 953-954.	6.6	0
4	Alternative oxidase (AOX) 1a and 1d limit proline-induced oxidative stress and aid salinity recovery in Arabidopsis. Plant Physiology, 2022, 188, 1521-1536.	4.8	26
5	Increased expression of <i>ANAC017</i> primes for accelerated senescence. Plant Physiology, 2021, 186, 2205-2221.	4.8	15
6	Circular permutation of concanavalin A: why the rarest protein modification in nature came to be. Plant Cell, 2021, 33, 2521-2522.	6.6	0
7	Playing with Pyr: alternate sources of mitochondrial pyruvate fuel plant respiration. Plant Cell, 2021, 33, 2519-2520.	6.6	1
8	Swapping acids: the ins and outs of plant mitochondrial metabolism. Plant Cell, 2021, 33, 3608-3609.	6.6	1
9	GABA and Proline Metabolism in Response to Stress. Plant in Challenging Environments, 2021, , 291-314.	0.4	4
10	Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation. Plant Cell, 2020, 32, 666-682.	6.6	80
11	The Lure of Lignin: Deciphering High-value Lignin Formation in Seed Coats. Plant Cell, 2020, 32, 3652-3653.	6.6	5
12	Feasting While Fasting: How Autophagy Helps Maize Survive Carbon Starvation. Plant Cell, 2020, 32, 2663-2664.	6.6	0
13	The Case of Virus-Induced Plant Autophagy: Cui Bono?. Plant Cell, 2020, 32, 805-806.	6.6	1
14	Breaking the Mold: Reduced Protein Storage in <i>Brassica napus</i> Seed Triggers Unexpected Structural Changes. Plant Cell, 2020, 32, 2077-2078.	6.6	0
15	Impact of oxidative stress on the function, abundance, and turnover of the Arabidopsis 80S cytosolic ribosome. Plant Journal, 2020, 103, 128-139.	5.7	25
16	Another Brick in the Plant Cell Wall: Characterization of Arabidopsis CSLD3 Function in Cell Wall Synthesis. Plant Cell, 2020, 32, 1359-1360.	6.6	1
17	Multifaceted functions of post-translational enzyme modifications in the control of plant glycolysis. Current Opinion in Plant Biology, 2020, 55, 28-37.	7.1	42
18	Rubisco lysine acetylation occurs at very low stoichiometry in mature Arabidopsis leaves: implications for regulation of enzyme function. Biochemical Journal, 2020, 477, 3885-3896.	3.7	13

Brendan O'Leary

#	Article	IF	CITATIONS
19	Core principles which explain variation in respiration across biological scales. New Phytologist, 2019, 222, 670-686.	7.3	107
20	Variation in Leaf Respiration Rates at Night Correlates with Carbohydrate and Amino Acid Supply. Plant Physiology, 2017, 174, 2261-2273.	4.8	76
21	The combination of gas-phase fluorophore technology and automation to enable high-throughput analysis of plant respiration. Plant Methods, 2017, 13, 16.	4.3	46
22	Mechanisms and Functions of Post-translational Enzyme Modifications in the Organization and Control of Plant Respiratory Metabolism. Advances in Photosynthesis and Respiration, 2017, , 261-284.	1.0	8
23	Early changes in apoplast composition associated with defence and disease in interactions between <i>Phaseolus vulgaris</i> and the halo blight pathogen <i>Pseudomonas syringae</i> Pv. phaseolicola. Plant, Cell and Environment, 2016, 39, 2172-2184.	5.7	102
24	The Infiltration-centrifugation Technique for Extraction of Apoplastic Fluid from Plant Leaves Using Phaseolus vulgaris as an Example. Journal of Visualized Experiments, 2014, , .	0.3	63
25	Increased β-Cyanoalanine Nitrilase Activity Improves Cyanide Tolerance and Assimilation in Arabidopsis. Molecular Plant, 2014, 7, 231-243.	8.3	30
26	The bacterialâ€ŧype phosphoenolpyruvate carboxylase isozyme from developing castor oil seeds is subject to in vivo regulatory phosphorylation at serineâ€451. FEBS Letters, 2012, 586, 1049-1054.	2.8	15
27	The Central Role of Phosphoenolpyruvate Metabolism in Developing Oilseeds. , 2012, , 279-301.		4
28	The remarkable diversity of plant PEPC (phosphoenolpyruvate carboxylase): recent insights into the physiological functions and post-translational controls of non-photosynthetic PEPCs. Biochemical Journal, 2011, 436, 15-34.	3.7	267
29	Phosphorylation of bacterial-type phosphoenolpyruvate carboxylase at Ser425 provides a further tier of enzyme control in developing castor oil seeds. Biochemical Journal, 2011, 433, 65-74.	3.7	17
30	Tissue-specific expression and post-translational modifications of plant- and bacterial-type phosphoenolpyruvate carboxylase isozymes of the castor oil plant, Ricinus communis L Journal of Experimental Botany, 2011, 62, 5485-5495.	4.8	42
31	Bacterial-type Phosphoenolpyruvate Carboxylase (PEPC) Functions as a Catalytic and Regulatory Subunit of the Novel Class-2 PEPC Complex of Vascular Plants. Journal of Biological Chemistry, 2009, 284, 24797-24805.	3.4	51
32	Coimmunopurification of Phosphorylated Bacterial- and Plant-Type Phospho <i>enol</i> pyruvate Carboxylases with the Plastidial Pyruvate Dehydrogenase Complex from Developing Castor Oil Seeds Â Â. Plant Physiology, 2008, 146, 1346-1357.	4.8	41
33	Single A326G mutation converts human CYP24A1 from 25-OH-D ₃ -24-hydroxylase into -23-hydroxylase, generating 11±,25-(OH) ₂ D ₃ -26,23-lactone. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12673-12678.	7.1	61
34	Bacterial―and plantâ€type phospho <i>enol</i> pyruvate carboxylase polypeptides interact in the heteroâ€oligomeric Classâ€2 PEPC complex of developing castor oil seeds. Plant Journal, 2007, 52, 839-849.	5.7	68
35	Artificial sweetening: domestication of carbohydrate mobilization in watermelon. Plant Cell, 0, , .	6.6	0