Ivan Simko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6592136/publications.pdf

Version: 2024-02-01

206112 201674 2,802 89 27 48 h-index citations g-index papers 94 94 94 2445 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Area Under the Disease Progress Stairs: Calculation, Advantage, and Application. Phytopathology, 2012, 102, 381-389.	2.2	288
2	Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108, 217-224.	3.6	150
3	Title is missing!. Molecular Breeding, 2000, 6, 25-36.	2.1	123
4	High-Resolution DNA Melting Analysis in Plant Research. Trends in Plant Science, 2016, 21, 528-537.	8.8	119
5	Assessment of Linkage Disequilibrium in Potato Genome With Single Nucleotide Polymorphism Markers. Genetics, 2006, 173, 2237-2245.	2.9	111
6	Development of EST-SSR Markers for the Study of Population Structure in Lettuce (Lactuca sativa L.). Journal of Heredity, 2009, 100, 256-262.	2.4	88
7	Characterization and mapping of R Pi-ber , a novel potato late blight resistance gene from Solanum berthaultii. Theoretical and Applied Genetics, 2006, 112, 674-687.	3.6	77
8	Phenomic Approaches and Tools for Phytopathologists. Phytopathology, 2017, 107, 6-17.	2.2	73
9	Shift in accumulation of flavonoids and phenolic acids in lettuce attributable to changes in ultraviolet radiation and temperature. Scientia Horticulturae, 2018, 239, 193-204.	3.6	73
10	Mapping genes for resistance to Verticillium albo-atrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Molecular Genetics and Genomics, 2004, 271, 522-531.	2.1	71
11	One potato, two potato: haplotype association mapping in autotetraploids. Trends in Plant Science, 2004, 9, 441-448.	8.8	71
12	Comparative analysis of quantitative trait loci for foliage resistance toPhytophthora infestans in tuber-bearingSolanum species. American Journal of Potato Research, 2002, 79, 125-132.	0.9	64
13	Evidence from Polygene Mapping for a Causal Relationship between Potato Tuber Dormancy and Abscisic Acid Content. Plant Physiology, 1997, 115, 1453-1459.	4.8	54
14	Empirical evaluation of DArT, SNP, and SSR marker-systems for genotyping, clustering, and assigning sugar beet hybrid varieties into populations. Plant Science, 2012, 184, 54-62.	3.6	54
15	Morphology and [14C]Gibberellin A12 Metabolism in WildType and Dwarf Solanum tuberosum ssp. Andigena Grown under Long and Short Photoperiods. Journal of Plant Physiology, 1995, 146, 467-473.	3.5	50
16	Detection of decay in fresh-cut lettuce using hyperspectral imaging and chlorophyll fluorescence imaging. Postharvest Biology and Technology, 2015, 106, 44-52.	6.0	49
17	Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr1. BMC Plant Biology, 2009, 9, 135.	3.6	47
18	Genetics of Resistance to Pests and Disease. , 2007, , 117-155.		46

#	Article	IF	CITATIONS
19	Phenomic and Physiological Analysis of Salinity Effects on Lettuce. Sensors, 2019, 19, 4814.	3.8	44
20	Development of genomic SSR markers for fingerprinting lettuce (Lactuca sativa L.) cultivars and mapping genes. BMC Plant Biology, 2013, 13, 11.	3.6	41
21	Identification of QTLs conferring resistance to downy mildew in legacy cultivars of lettuce. Scientific Reports, 2013, 3, 2875.	3.3	40
22	QTL analysis of late blight resistance in a diploid potato family of Solanum phureja $\tilde{A}-S$. stenotomum. Theoretical and Applied Genetics, 2005, 111, 609-617.	3.6	39
23	Sucrose application causes hormonal changes associated with potato tuber induction. Journal of Plant Growth Regulation, 1994, 13, 73-77.	5.1	36
24	Mapping polygenes for tuber resistance to late blight in a diploid Solanum phureja $\tilde{A}-S$. stenotomum hybrid population. Plant Breeding, 2006, 125, 385-389.	1.9	34
25	Genetic architecture of tipburn resistance in lettuce. Theoretical and Applied Genetics, 2019, 132, 2209-2222.	3. 6	34
26	Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiology, 2015, 15, 19.	3.3	33
27	Genomics and Marker-Assisted Improvement of Vegetable Crops. Critical Reviews in Plant Sciences, 2021, 40, 303-365.	5.7	33
28	Non-destructive Phenotyping of Lettuce Plants in Early Stages of Development with Optical Sensors. Frontiers in Plant Science, 2016, 7, 1985.	3.6	32
29	Genome-wide association mapping reveals loci for shelf life and developmental rate of lettuce. Theoretical and Applied Genetics, 2020, 133, 1947-1966.	3.6	29
30	Population Structure in Cultivated Lettuce and Its Impact on Association Mapping. Journal of the American Society for Horticultural Science, 2008, 133, 61-68.	1.0	28
31	Identification of romaine lettuce (Lactuca sativa var. longifolia) Cultivars with reduced browning discoloration for fresh-cut processing. Postharvest Biology and Technology, 2019, 156, 110931.	6.0	27
32	Polygene mapping as a tool to study the physiology of potato tuberization and dormancy. American Journal of Potato Research, 2004, 81, 281-289.	0.9	26
33	Quantitative resistance to late blight from Solanum berthaultii cosegregates with R Pi-ber: insights in stability through isolates and environment. Theoretical and Applied Genetics, 2010, 121, 1553-1567.	3. 6	26
34	Similarity of QTLs detected for in vitro and greenhouse development of potato plants. Molecular Breeding, 1999, 5, 417-428.	2.1	25
35	Mining data from potato pedigrees: tracking the origin of susceptibility and resistance to Verticillium dahliae in North American cultivars through molecular marker analysis. Theoretical and Applied Genetics, 2004, 108, 225-230.	3.6	25
36	Lettuce and Spinach. CSSA Special Publication - Crop Science Society of America, 0, , 53-85.	0.1	25

#	Article	lF	CITATIONS
37	The genetics of resistance to lettuce drop (Sclerotinia spp.) in lettuce in a recombinant inbred line population from Reine des Glaces × Eruption. Theoretical and Applied Genetics, 2019, 132, 2439-2460.	3.6	25
38	Inheritance of Decay of Fresh-cut Lettuce in a Recombinant Inbred Line Population from â€~Salinas 88' ×â€~La Brillante'. Journal of the American Society for Horticultural Science, 2014, 139, 388-398.	1.0	25
39	Computing Integrated Ratings from Heterogeneous Phenotypic Assessments: A Case Study of Lettuce Postharvest Quality and Downy Mildew Resistance. Crop Science, 2012, 52, 2131-2142.	1.8	23
40	Genome-wide association of 10 horticultural traits with expressed sequence tag-derived SNP markers in a collection of lettuce lines. Crop Journal, 2013, 1, 25-33.	5.2	22
41	Effects of kinetin, paclobutrazol and their interactions on the microtuberization of potato stem segments cultured in vitro in the light. Plant Growth Regulation, 1993, 12, 23-27.	3.4	21
42	Resistance to Downy Mildew in Lettuce â€~La Brillante' is Conferred by <i>Dm50</i> Gene and Multiple QTL. Phytopathology, 2015, 105, 1220-1228.	2.2	20
43	Combining phenotypic data from ordinal rating scales in multiple plant experiments. Trends in Plant Science, 2011, 16, 235-237.	8.8	18
44	Foliar and tuber late blight resistance in a <i>Solanum tuberosum</i> breeding population. Plant Breeding, 2010, 129, 197-201.	1.9	17
45	Evaluation and <scp>QTL</scp> mapping of resistance to powdery mildew in lettuce. Plant Pathology, 2014, 63, 344-353.	2.4	17
46	Characterization and Performance of 16 New Inbred Lines of Lettuce. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 679-687.	1.0	17
47	Effect of paclobutrazol onin vitro formation of potato microtubers and their sprouting after storage. Biologia Plantarum, 1994, 36, 15.	1.9	16
48	Tuberonic (12-OH-jasmonic) acid glucoside and its methyl ester in potato. Phytochemistry, 1996, 43, 727-730.	2.9	16
49	Molecular markers reliably predict post-harvest deterioration of fresh-cut lettuce in modified atmosphere packaging. Horticulture Research, 2018, 5, 21.	6.3	15
50	Mapping a dominant negative mutation for triforine sensitivity in lettuce and its use as a selectable marker for detecting hybrids. Euphytica, 2011, 182, 157-166.	1.2	14
51	Identification of Factors Affecting the Deterioration Rate of Fresh-Cut Lettuce in Modified Atmosphere Packaging. Food and Bioprocess Technology, 2020, 13, 1997-2011.	4.7	14
52	Genetic Variation in Response to N, P, or K Deprivation in Baby Leaf Lettuce. Horticulturae, 2020, 6, 15.	2.8	14
53	Baby Leaf Lettuce Germplasm Enhancement: Developing Diverse Populations with Resistance to Bacterial Leaf Spot Caused by Xanthomonas campestris pv. vitians. Hortscience: A Publication of the American Society for Hortcultural Science, 2014, 49, 18-24.	1.0	14
54	The LsVe1L allele provides a molecular marker for resistance to Verticillium dahliae race 1 in lettuce. BMC Plant Biology, 2019, 19, 305.	3.6	13

#	Article	IF	CITATIONS
55	Identification of marker compounds for predicting browning of fresh-cut lettuce using untargeted UHPLC-HRMS metabolomics. Postharvest Biology and Technology, 2021, 180, 111626.	6.0	13
56	Iceberg Lettuce Breeding Lines with Resistance to Verticillium Wilt Caused by Race 1 Isolates of Verticillium dahliae. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 501-504.	1.0	13
57	Comparing the Predictive Abilities of Phenotypic and Markerâ€Assisted Selection Methods in a Biparental Lettuce Population. Plant Genome, 2016, 9, plantgenome2015.03.0014.	2.8	12
58	Predictive Modeling of a Leaf Conceptual Midpoint Quasi-Color (CMQ) Using an Artificial Neural Network. Sensors, 2020, 20, 3938.	3.8	12
59	Molecular Mapping of Water-Stress Responsive Genomic Loci in Lettuce (Lactuca spp.) Using Kinetics Chlorophyll Fluorescence, Hyperspectral Imaging and Machine Learning. Frontiers in Genetics, 2021, 12, 634554.	2.3	12
60	Genetics of Partial Resistance Against <i>Verticillium dahliae</i> Race 2 in Wild and Cultivated Lettuce. Phytopathology, 2021, 111, 842-849.	2.2	12
61	Mapping and identification of genetic loci affecting earliness of bolting and flowering in lettuce. Theoretical and Applied Genetics, 2021, 134, 3319-3337.	3.6	12
62	Analysis of bibliometric indicators to determine citation bias. Palgrave Communications, 2015, 1 , .	4.7	12
63	Breeding lettuce for improved fresh-cut processing. Acta Horticulturae, 2016, , 65-76.	0.2	11
64	Accuracy, reliability, and timing of visual evaluations of decay in fresh-cut lettuce. PLoS ONE, 2018, 13, e0194635.	2.5	11
65	Genetic variation and relationship among content of vitamins, pigments, and sugars in baby leaf lettuce. Food Science and Nutrition, 2019, 7, 3317-3326.	3.4	11
66	Genetic analysis of resistance to bacterial leaf spot in the heirloom lettuce cultivar Reine des Glaces. Molecular Breeding, 2019, 39, 1.	2.1	11
67	Seasonality, shelf life and storage atmosphere are main drivers of the microbiome and E. coli O157:H7 colonization of post-harvest lettuce cultivated in a major production area in California. Environmental Microbiomes, 2021, 16, 25.	5.0	11
68	Quantitative trait loci for polyamine content in an RFLP-mapped potato population and their relationship to tuberization. Physiologia Plantarum, 1999, 106, 210-218.	5.2	10
69	Epidemiological Characterization of Lettuce Drop (<i>Sclerotinia</i> spp.) and Biophysical Features of the Host Identify Soft Stem as a Susceptibility Factor. PhytoFrontiers, 2021, 1, 182-204.	1.6	9
70	Phenotypic characterization and inheritance of enzymatic browning on cut surfaces of stems and leaf ribs of romaine lettuce. Postharvest Biology and Technology, 2021, 181, 111653.	6.0	9
71	Genome-wide association mapping reveals genomic regions frequently associated with lettuce field resistance to downy mildew. Theoretical and Applied Genetics, 2022, 135, 2009-2024.	3.6	9
72	Genetic control of aggressiveness in Phytophthora infestansto tomato. Canadian Journal of Plant Pathology, 2002, 24, 471-480.	1.4	8

#	Article	IF	Citations
73	Identification of Major Quantitative Trait Loci Controlling Field Resistance to Downy Mildew in Cultivated Lettuce (<i>Lactuca sativa</i>). Phytopathology, 2021, 111, 541-547.	2.2	8
74	DEVELOPMENT OF MOLECULAR MARKERS FOR MARKER-ASSISTED SELECTION OF DIEBACK DISEASE RESISTANCE IN LETTUCE (LACTUCA SATIVA). Acta Horticulturae, 2010, , 401-408.	0.2	8
75	IDENTIFICATION OF MOLECULAR MARKERS LINKED TO THE VERTICILLIUM WILT RESISTANCE GENE HOMOLOGUE IN POTATO (SOLANUM TUBEROSUM L.). Acta Horticulturae, 2003, , 127-133.	0.2	7
76	Evaluation of the R _{Piâ€ber} late blight resistance gene for tuber resistance in the field and laboratory. Plant Breeding, 2011, 130, 464-468.	1.9	6
77	Maturity-Adjusted Resistance of Potato (Solanum tuberosum L.) Cultivars to Verticillium Wilt Caused by Verticillium dahliae. American Journal of Potato Research, 2017, 94, 173-177.	0.9	6
78	Release of Three Iceberg Lettuce Populations with Combined Resistance to Two Soilborne Diseases. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 247-250.	1.0	6
79	Variation within <i>Lactuca</i> spp. for Resistance to <i>Impatiens necrotic spot virus</i> Plant Disease, 2018, 102, 341-348.	1.4	6
80	IdeTo: Spreadsheets for Calculation and Analysis of Area Under the Disease Progress Over Time Data. PhytoFrontiers, 2021, 1, 244-247.	1.6	5
81	SM09A and SM09B: Romaine Lettuce Breeding Lines Resistant to Dieback and with Improved Shelf Life. Hortscience: A Publication of the American Society for Hortcultural Science, 2010, 45, 670-672.	1.0	5
82	Genome Sequence of <i>Verticillium dahliae</i> Race 1 Isolate VdLs.16 From Lettuce. Molecular Plant-Microbe Interactions, 2020, 33, 1265-1269.	2.6	4
83	Identification of Quantitative Trait Loci Associated with Bacterial Leaf Spot Resistance in Baby Leaf Lettuce. Plant Disease, 2022, 106, 2583-2590.	1.4	4
84	Insights into nitrogen metabolism in the wild and cultivated lettuce as revealed by transcriptome and weighted gene co-expression network analysis. Scientific Reports, 2022, 12, .	3.3	4
85	Mapping loci for chlorosis associated with chlorophyll b deficiency in potato. Euphytica, 2008, 162, 99-107.	1.2	3
86	Genetics of robustness under nitrogen―and waterâ€deficient conditions in fieldâ€grown lettuce. Crop Science, 2021, 61, 1582-1619.	1.8	3
87	Dynamics of Verticillium dahliae race 1 population under managed agricultural ecosystems. BMC Biology, 2021, 19, 131.	3.8	1
88	Hypersensitivity to triforine in lettuce is triggered by a TNL gene through the diseaseâ€resistance pathway. Plant Biotechnology Journal, 2021, 19, 2144-2146.	8.3	1
89	Lettuce (Lactuca sativa L.) germplasm resistant to bacterial leaf spot caused by race 1 of Xanthomonas hortorum pv. vitians (Brown 1918) Morinià re et al. 2020. , 2022, 104, 993-1008.		1