Yifei Miao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6589395/publications.pdf

Version: 2024-02-01

516710 642732 1,028 29 16 23 citations h-index g-index papers 1905 32 32 32 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Enhancer-associated long non-coding RNA LEENE regulates endothelial nitric oxide synthase and endothelial function. Nature Communications, 2018, 9, 292.	12.8	129
2	FAM3A activates PI3K p $110\hat{l}_{\pm}$ /Akt signaling to ameliorate hepatic gluconeogenesis and lipogenesis. Hepatology, 2014, 59, 1779-1790.	7.3	103
3	MicroRNA-92a Mediates Endothelial Dysfunction in CKD. Journal of the American Society of Nephrology: JASN, 2017, 28, 3251-3261.	6.1	90
4	Intrinsic Endocardial Defects Contribute to Hypoplastic Left Heart Syndrome. Cell Stem Cell, 2020, 27, 574-589.e8.	11.1	89
5	Farnesoid X receptor (FXR) gene deficiency impairs urine concentration in mice. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2277-2282.	7.1	68
6	Presynaptic Defects Underlying Impaired Learning and Memory Function in Lipoprotein Lipase-Deficient Mice. Journal of Neuroscience, 2009, 29, 4681-4685.	3.6	65
7	Disruption of prostaglandin E2 receptor EP4 impairs urinary concentration via decreasing aquaporin 2 in renal collecting ducts. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8397-8402.	7.1	59
8	Hepatic Overexpression of ATP Synthase \hat{I}^2 Subunit Activates PI3K/Akt Pathway to Ameliorate Hyperglycemia of Diabetic Mice. Diabetes, 2014, 63, 947-959.	0.6	51
9	Inactivation of the E-Prostanoid 3 Receptor Attenuates the Angiotensin II Pressor Response via Decreasing Arterial Contractility. Arteriosclerosis, Thrombosis, and Vascular Biology, 2012, 32, 3024-3032.	2.4	49
10	Suppression of Endothelial AGO1 Promotes Adipose Tissue Browning and Improves Metabolic Dysfunction. Circulation, 2020, 142, 365-379.	1.6	44
11	BMP10 Signaling Promotes the Development of Endocardial Cells from Human Pluripotent Stem Cell-Derived Cardiovascular Progenitors. Cell Stem Cell, 2021, 28, 96-111.e7.	11.1	43
12	Liver X receptor \hat{l}^2 controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14006-14011.	7.1	37
13	Micro <scp>RNA</scp> â€483 amelioration of experimental pulmonary hypertension. EMBO Molecular Medicine, 2020, 12, e11303.	6.9	35
14	Dysregulation of Notch and ERÎ \pm signaling in AhR ^{â^/\angle a^^\/\angle a^^\/\angle a^\/\angle a^\/\ang}	7.1	33
15	Patient-Specific Induced Pluripotent Stem Cells Implicate Intrinsic Impaired Contractility in Hypoplastic Left Heart Syndrome. Circulation, 2020, 142, 1605-1608.	1.6	33
16	Expression of pro- and anti-angiogenic isoforms of VEGF in the mouse model of oxygen-induced retinopathy. Experimental Eye Research, 2011, 93, 921-926.	2.6	27
17	Role of endothelial cells in pulmonary fibrosis via SREBP2 activation. JCI Insight, 2021, 6, .	5.0	21
18	iPSC–endothelial cell phenotypic drug screening and in silico analyses identify tyrphostin-AG1296 for pulmonary arterial hypertension. Science Translational Medicine, 2021, 13, .	12.4	17

#	Article	IF	CITATIONS
19	Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates. Science Translational Medicine, 2022, 14, eabl8574.	12.4	10
20	Liver X receptor β: new player in the regulatory network of thyroid hormone and  browning' of white fat. Adipocyte, 2016, 5, 238-242.	2.8	8
21	Isolation of Endocardial and Coronary Endothelial Cells from the Ventricular Free Wall of the Rat Heart. Journal of Visualized Experiments, 2020, , .	0.3	7
22	Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Frontiers in Cell and Developmental Biology, 2021, 9, 702974.	3.7	3
23	KMT2D-NOTCH Mediates Coronary Abnormalities in Hypoplastic Left Heart Syndrome. Circulation Research, 2022, 131, 280-282.	4.5	3
24	Abstract 12937: Single-cell Transcriptomic Analysis Reveals Developmentally Impaired Endocardial Population in Hypoplastic Left Heart Syndrome. Circulation, 2020, 142, .	1.6	2
25	Abstract 238: Single-Cell Transcriptomic Analysis and Patient-Specific IPSCs Reveal Dysregulated Cell Cycle in Coronary Endothelial Cell in Hypoplastic Left Heart Syndrome. Circulation Research, 2020, 127, .	4.5	1
26	Enhancerâ€Associated Long Nonâ€Coding RNAs Regulate Vascular Endothelial Function. FASEB Journal, 2018, 32, .	0.5	0
27	Abstract 685: Sterol Regulatory Element-Binding Protein 2-Mediated Endothelial-to-Mesenchymal Transition Contributes to Pulmonary Fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
28	Abstract 250: Endothelial functional Regulation by Enhancer-Associated Long Non-Coding RNAs. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, .	2.4	0
29	Vascular Modulation of Adipose function: Role of Endothelial Argonaute 1. FASEB Journal, 2019, 33, 527.12.	0.5	0