
Krzysztof Treder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6589371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Next generation sequencing (NGS) as a multipurpose method for detection and differentiation of plant viruses. Progress in Plant Protection, 2021, 61, 269-277.	0.1	0
2	Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Scientific Reports, 2020, 10, 17759.	3.3	44
3	Modification of Yield and Fiber Fractions Biosynthesis in Phaseolus vulgaris L. by Treatment with Biostimulants Containing Amino Acids and Seaweed Extract. Agronomy, 2020, 10, 1338.	3.0	16
4	Evaluation of the Effects of Allelopathic Aqueous Plant Extracts, as Potential Preparations for Seed Dressing, on the Modulation of Cauliflower Seed Germination. Agriculture (Switzerland), 2020, 10, 122.	3.1	18
5	Badania tolerancji odmian ziemniaka na stresy abiotyczne w świetle postępujących zmian klimatycznych. Biuletyn Instytutu Hodowli I Aklimatyzacji Roślin, 2020, , 235-237.	0.0	0
6	Opracowanie czuÅ,ych metod wykrywania najważniejszych wirusów ziemniaka. Biuletyn Instytutu Hodowli I Aklimatyzacji RoÅ√lin, 2020, , 261-264.	0.0	0
7	The 3′ Untranslated Region of a Plant Viral RNA Directs Efficient Cap-Independent Translation in Plant and Mammalian Systems. Pathogens, 2019, 8, 28.	2.8	13
8	Potato Pulp as the Peroxidase Source for 2,4-Dichlorophenol Removal. Waste and Biomass Valorization, 2018, 9, 1061-1071.	3.4	11
9	Study on utilizing solid food industry waste with brewers' spent grain and potato pulp as possible peroxidase sources. Journal of Food Biochemistry, 2018, 42, e12446.	2.9	9
10	Optimization of a magnetic capture RT-LAMP assay for fast and real-time detection of potato virus Y and differentiation of N and O serotypes. Archives of Virology, 2018, 163, 447-458.	2.1	17
11	Effect of Growth Regulators and Ethanol on Termination of Dormancy in Potato Tubers. American Journal of Potato Research, 2017, 94, 544-555.	0.9	11
12	Detection of Potato Virus Y (Pvy) by Reverse-Transcription Loop-Mediated Nucleic Acid Amplification (Rt-Lamp). Plant Breeding and Seed Science, 2017, 75, 77-85.	0.1	0
13	Ion-Exchange Membrane Chromatography as an Alternative Method of Separation of Potato y Virus. Plant Breeding and Seed Science, 2015, 72, 55-67.	0.1	0
14	A One-Step, Real-Time Reverse Transcription Loopmediated Isothermal Amplification Assay to Detect Potato Virus Y. American Journal of Potato Research, 2015, 92, 303-311.	0.9	33
15	Removal of Phenol from Synthetic and Industrial Wastewater by Potato Pulp Peroxidases. Water, Air, and Soil Pollution, 2015, 226, 254.	2.4	52
16	Effect of ethanol and plant growth regulators on termination of potato microtuber dormancy. Plant Breeding and Seed Science, 2015, 71, 23-36.	0.1	0
17	The Adaptation of Silica Capture RT-PCR for the Detection of Potato Virus Y. American Journal of Potato Research, 2014, 91, 525-531.	0.9	7
18	Cation-dependent folding of 3′ cap-independent translation elements facilitates interaction of a 17-nucleotide conserved sequence with elF4G. Nucleic Acids Research. 2013, 41, 3398-3413.	14.5	56

Krzysztof Treder

#	Article	IF	CITATIONS
19	Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnology, 2012, 12, 22.	3.3	37
20	Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the elF4E Subunit of elF4F. Journal of Biological Chemistry, 2009, 284, 14189-14202.	3.4	83
21	Factors influencing detection of Potato Leafroll Virus and Potato Virus Y in potato tuber extracts. Plant Breeding and Seed Science, 2009, 59, 65-74.	0.1	3
22	The 3′ cap-independent translation element of Barley yellow dwarf virus binds eIF4F via the eIF4G subunit to initiate translation. Rna, 2008, 14, 134-147.	3.5	94
23	The amazing diversity of cap-independent translation elements in the 3′-untranslated regions of plant viral RNAs. Biochemical Society Transactions, 2007, 35, 1629-1633.	3.4	86