Satoko Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6589309/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Atoms-in-Molecules Dual Parameter Analysis of Weak to Strong Interactions: Behaviors of Electronic Energy Densities versus Laplacian of Electron Densities at Bond Critical Points. Journal of Physical Chemistry A, 2008, 112, 13593-13599.	2.5	152
2	Polar Coordinate Representation of <i>H</i> _b (<i>r</i> _c) versus (â,, ² /8 <i>m</i>)â–½ ² ï _b (<i>r</i> _c) at BCP in AIM Analysis: Classification and Evaluation of Weak to Strong Interactions. Journal of Physical Chemistry A, 2009, 113, 10050-7.	2.5	106
3	Attractive Interaction Caused by the Linear F···Se⠰C Alignment in Naphthalene Peri Positions. Journal of the American Chemical Society, 1998, 120, 3635-3640.	13.7	104
4	Novel Substituent Effect on77Se NMR Chemical Shifts Caused by 4c-6e versus 2c-4e and 3c-4e in Naphthalene Peri Positions:Â Spectroscopic and Theoretical Study. Journal of Organic Chemistry, 1999, 64, 6688-6696.	3.2	102
5	Four-Center Six-Electron Interaction versus Lone Pairâ^'Lone Pair Interaction between Selenium Atoms in Naphthalene Peri Positions. Journal of Organic Chemistry, 1998, 63, 8790-8800.	3.2	79
6	Structure of 1-(Arylselanyl)naphthalenes. 2. G Dependence in 8-G-1-(p-YC6H4Se)C10H6. Journal of Organic Chemistry, 2002, 67, 38-48.	3.2	79
7	Structure of bis[8-(phenylselanyl)naphthyl] diselenide: first linear alignment of four Se atoms as a four-centre six-electron bond. Chemical Communications, 1996, , 371.	4.1	78
8	Atoms-in-Molecules Analysis of Extended Hypervalent Five-Center, Six-Electron (5c-6e) C2Z2O Interactions at the 1,8,9-Positions of Anthraquinone and 9-Methoxyanthracene Systems. Chemistry - A European Journal, 2007, 13, 255-268.	3.3	77
9	A New Type of Imido Group Donor:  Synthesis and Characterization of Sulfonylimino-λ ³ -bromane that Acts as a Nitrenoid in the Aziridination of Olefins at Room Temperature under Metal-Free Conditions. Journal of the American Chemical Society, 2007, 129, 12938-12939.	13.7	70
10	Successive Change in Conformation Caused byp-Y Groups in 1-(MeSe)-8-(p-YC6H4Se)C10H6:Â Role of Linear Se···Seâ~'C Three-Centerâ~'Four-Electron versus n(Se)···n(Se) Two-Centerâ~'Four-Electron Nonbonded Interactions. Journal of Physical Chemistry A, 1999, 103, 9906-9912.	2.5	64
11	Structural studies of halogen adducts of diorganyl chalcogenides in solutions by1H,13C,77Se and125Te NMR. Journal of Physical Organic Chemistry, 1990, 3, 358-368.	1.9	62
12	Atoms-in-Molecules Dual Functional Analysis of Weak to Strong Interactions. Current Organic Chemistry, 2010, 14, 181-197.	1.6	62
13	Inverse Substituent Effect on77Se NMR Chemical Shifts in Naphthalene Systems with Linear 4c-6e Se4Bond: 1-[8-(p-YC6H4Se)C10H6]SeSe[C10H6(SeC6H4Y-p)-8′]-1′vs. 1-(MeSe)-8-(p-YC6H4Se)C10H6. Cho Letters, 1996, 25, 947-948.	em is try	59
14	Structural Study of Aryl Selenides in Solution Based on77Se NMR Chemical Shifts:Â Application of the GIAO Magnetic Shielding Tensor of the77Se Nucleus. Journal of Physical Chemistry A, 1999, 103, 6074-6081.	2.5	52
15	Structure of 1-(Arylselanyl)naphthalenes â~' Y Dependence in 1-(p-YC6H4Se)C10H7. European Journal of Organic Chemistry, 2001, 2001, 3933-3943.	2.4	49
16	Linear alignment of four sulfur atoms in bis[(8-phenylthio)naphthyl] disulfide: contribution of linear S4 hypervalent four-centre six-electron bond to the structure. Chemical Communications, 2002, , 2416-2417.	4.1	49
17	First linear alignment of five C–Se⋯O⋯Se–C atoms in anthraquinone and 9-(methoxy)anthracene bearing phenylselanyl groups at 1,8-positions. Chemical Communications, 2003, , 124-125.	4.1	48
18	Structures of 1-(Arylseleninyl)naphthalenes:Â O, G, and Y Dependences in 8-G-1-[p-YC6H4Se(O)]C10H6. Journal of Organic Chemistry, 2006, 71, 5574-5585.	3.2	48

#	Article	IF	CITATIONS
19	Structural studies of halogen adducts of some cyclic selenides and tellurides by1H,13C,77Se and125Te NMR. Evidence for the formation of molecular complexes of selenoxanthone and selenanthrene with bromine. Journal of Physical Organic Chemistry, 1990, 3, 369-374.	1.9	44
20	Dynamic Behaviors of Interactions: Application of Normal Coordinates of Internal Vibrations to AIM Dual Functional Analysis. Journal of Physical Chemistry A, 2010, 114, 7423-7430.	2.5	44
21	Role of d <i>G/</i> d <i>w</i> and d <i>V/</i> d <i>w</i> in AIM Analysis: An Approach to the Nature of Weak to Strong Interactions. Journal of Physical Chemistry A, 2013, 117, 1795-1803.	2.5	41
22	Applications of Normal Coordinates of Internal Vibrations to Generate Perturbed Structures: Dynamic Behavior of Weak to Strong Interactions Elucidated by Atoms-in-Molecules Dual Functional Analysis. Bulletin of the Chemical Society of Japan, 2012, 85, 1293-1305.	3.2	39
23	Orientational Effect of Aryl Groups on77Se NMR Chemical Shifts: Experimental and Theoretical Investigations. Chemistry - A European Journal, 2006, 12, 3829-3846.	3.3	38
24	Noncovalent Z···Z (Z=O, S, Se, and Te) Interactions: How Do They Operate to Control Fine Structures of 1,8-Dichalcogene-Substituted Naphthalenes?. Bulletin of the Chemical Society of Japan, 2008, 81, 1605-1615.	3.2	37
25	Extended Hypervalent 5câ^'6e Interactions:Â Linear Alignment of Five Câ^'SeOSeâ^'C Atoms in Anthraquinone and 9-Methoxyanthracene Bearing Arylselanyl Groups at the 1,8-Positions. Journal of Organic Chemistry, 2004, 69, 1676-1684.	3.2	35
26	Dynamic Behavior of Hydrogen Bonds from <i>Pure</i> Closed Shell to Shared Shell Interaction Regions Elucidated by AIM Dual Functional Analysis. Journal of Physical Chemistry A, 2013, 117, 1804-1816.	2.5	30
27	Nonbonded P···P and P···Se Interactions in Naphthalene 1,8-Positions: Role of Lone-Pair Orbitals. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1833-1837.	1.6	27
28	Extended hypervalent E′â<¯E–Eâ<¯E′ 4c–6e (E, E′ = Se, S) interactions: structure, stability and reactivi 1-(8-PhE′C10H6)EE(C10H6E′Ph-8′)-1′. New Journal of Chemistry, 2008, 32, 1881.	ty of 2.8	26
29	On the Factors to Determine77Se NMR Chemical Shifts of Organic Selenium Compounds: Application of GIAO Magnetic Schielding Tensor to the77Se NMR Spectroscopy. Chemistry Letters, 1998, 27, 523-524.	1.3	24
30	First Br4four centre–six electron and Se2Br5seven centre–ten electron bonds in nonionic bromine adducts of selenanthrene. Chemical Communications, 2004, , 140-141.	4.1	24
31	Orientational Effect of Aryl Groups in Aryl Selenides:Â How Can1H and13C NMR Chemical Shifts Clarify the Effect?. Journal of Organic Chemistry, 2007, 72, 7587-7596.	3.2	22
32	Torsional Angular Dependence of ¹ <i>J</i> (Se,Se) and Fermi Contact Control of ⁴ <i>J</i> (Se,Se): Analysis of ^{<i>n</i>(i>} <i>J</i> (Se,Se) (<i>n</i> =1–4) Based on Molecular Orbital Theory. Chemistry - A European Journal, 2008, 14, 5645-5655.	3.3	20
33	lmido transfer of sulfonylimino-λ3-bromane makes possible the synthesis of sulfonylimino-λ3-iodanes. Chemical Communications, 2009, , 959.	4.1	18
34	Relativistic Effect on ⁷⁷ Se NMR Chemical Shifts of Various Selenium Species in the Framework of Zeroth-Order Regular Approximation. Journal of Physical Chemistry A, 2011, 115, 8721-8730.	2.5	17
35	Perturbed structures generated using coordinates derived from compliance constants in internal vibrations for QTAIM dual functional analysis: Intrinsic dynamic nature of interactions. International Journal of Quantum Chemistry, 2018, 118, e25590.	2.0	17
36	Dynamic and static behavior of hydrogen bonds of the X–Hâ√ï€ type (X = F, Cl, Br, I, RO and RR′N; R, R′ =	H or) Tj E 2.8	TQq0 0 0 rgE 16

Chemical Physics, 2015, 17, 28879-28891.

#	Article	IF	CITATIONS
37	Mechanistic Studies on the Generation and Properties of Superelectrophilic Singlet Carbenes from Bis(perfluoroalkanesulfonyl)bromonium Ylides. Journal of Organic Chemistry, 2016, 81, 3188-3198.	3.2	16
38	How does non-covalent Seâ< Seî€O interaction stabilize selenoxides at naphthalene 1,8-positions: structural and theoretical investigations. New Journal of Chemistry, 2009, 33, 196-206.	2.8	15
39	Dynamic and static behavior of the Hâ‹ï€ and Eâ‹ï€ interactions in EH ₂ adducts of benzene ï€-system (E = O, S, Se and Te), elucidated by QTAIM dual functional analysis. Physical Chemistry Chemical Physics, 2016, 18, 9948-9960.	2.8	14
40	Experimental and Theoretical Advances in Functional Understanding of Flavonoids as Anti-Tumor Agents. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 307-332.	1.7	14
41	Structural studies on diaryl selenide dihalides in solution: molecular complex formation of substituted diphenyl selenides with bromine. Perkin Transactions II RSC, 2002, , 262-270.	1.1	13
42	How77Se NMR Chemical Shifts Originate from Pre-α, α, β, and γ Effects: Interpretation Based on Molecular Orbital Theory. Chemistry - A European Journal, 2007, 13, 5282-5293.	3.3	13
43	Fine structures of 8-G-1-(arylethynylselanyl)naphthalenes (G = H, Cl, Br): Factors to control the linear alignment of five Gâ∢Se–C C–CAr atoms in crystals and the behavior in solution. Polyhedron, 2008, 27, 3557-3566.	2.2	12
44	Evidence for Effective p(Z)â~Ï€(Ar) Conjugations (Z = S, Se, and Te, as Well as Z = O) in 9-(Arylchalcogenyl)triptycenes: Experimental and Theoretical Investigations. Journal of Organic Chemistry, 2009, 74, 4763-4771.	3.2	12
45	Dynamic and Static Behaviors of Nâ€"Zâ€"N σ(3câ€"4e) (Z = S, Se, and Te) Interactions: Atoms-in-Molecules Dual Functional Analysis with High-Resolution X-ray Diffraction Determination of Electron Densities for 2-(2-Pyridylimino)-2 <i>H</i> -1,2,4-thiadiazolo[2,3- <i>a</i>]pyridine. Journal of Physical Chemistry A, 2011, 115, 11775-11787.	2.5	12
46	Transannular E··Â-Eâ€ ² Interactions in Neutral, Radical Cationic, and Dicationic Forms of <i>cyclo</i> -[E(CH ₂ CH ₂ CH ₂) ₂ Eâ€ ²] (E, Eâ€ ² = S, Se, Te, and with Structural Feature: Dynamic and Static Behavior of E··Êâ€ ² Elucidated by QTAIM Dual Functional Analysis. Journal of Organic Chemistry, 2015, 80, 11963-11976.	l Q) 3.2	12
47	Behavior of Halogen Bonds of the Yâ^'Xâ‹â‹â‹ï€ Type (X, Y=F, Cl, Br, I) in the Benzene ï€ System, Elucidated t Using a Quantum Theory of Atoms in Molecules Dualâ€Functional Analysis. ChemPhysChem, 2016, 17, 2579-2589.)y 2.1	12
48	Nature of S ₂ Se ₂ σ(4c–6e) at naphthalene 1,8-positions and models, elucidated by QTAIM dual functional analysis. RSC Advances, 2016, 6, 93195-93204.	3.6	12
49	High-resolution X-ray diffraction determination of the electron density of 1-(8-PhSC ₁₀ H ₆)SS(C ₁₀ H ₆ SPh-8â€2)-1â€2 with the QTAIM approach: evidence for S ₄ Ïf(4c–6e) at the naphthalene <i>peri</i> -positions. RSC Advances, 2018. 8. 9651-9660.	3.6	12
50	⁷⁷ Se NMR Chemical Shifts of 9-(Arylselanyl)triptycenes: New Standard for Planar Structures of ArSeR and Applications to Determine the Structures in Solutions. Journal of Organic Chemistry, 2008, 73, 9259-9269.	3.2	11
51	On the equilibrium between molecular complexes and trigonal bipyramidal adducts of diaryl selenide dibromides in solution. Heteroatom Chemistry, 2001, 12, 369-379.	0.7	10
52	Role of p(Z)–π(Ar/Nap) conjugation in structures of 1-(arylchalcogena)naphthalenes for Z = Te versus Se, S and O: experimental and theoretical investigations. Dalton Transactions, 2012, 41, 7485.	3.3	10
53	Molecular Complex Formation of Diphenyl Selenides with Bromine: Electronic and Steric Effects. Phosphorus, Sulfur and Silicon and the Related Elements, 1992, 67, 79-82.	1.6	9
54	Relativistic effects on the 125Te and 33S NMR chemical shifts of various tellurium and sulfur species, together with 77Se of selenium congeners, in the framework of a zeroth-order regular approximation: applicability to tellurium compounds. RSC Advances, 2014, 4, 44795-44810.	3.6	9

#	Article	IF	CITATIONS
55	Nature of the Eâ√E′ interactions (E, E′ = O, S, Se, and Te) at naphthalene 1,8-positions with fine details of the structures: experimental and theoretical investigations. New Journal of Chemistry, 2019, 43, 14224-14237.	2.8	9
56	Extended Hypervalent 5c–6e Interactions: Linear Alignment of Five C─ZOZ─C (Z = S, Se) Atoms in Anthraquinone and Anthracene Systems. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1351-1355.	1.6	8
57	Proposal for Sets of77Se NMR Chemical Shifts in Planar and Perpendicular Orientations of Aryl Group and the Applications. Bioinorganic Chemistry and Applications, 2006, 2006, 1-13.	4.1	8
58	How Are Non-Bonded G···Z (Z = O, S, and Se) Distances at Benzene 1,2-, Naphthalene 1,8-, and Anthracene 1,8,9-Positions Controlled? An Approach to Causality in Weak Interactions. Bulletin of the Chemical Society of Japan, 2009, 82, 712-722.	3.2	8
59	Aromatic Selenoic, Selenothioic, and Diselenoic Acid Salts: Isolation, Characterization, and 77Se NMR Spectra, Together with Theoretical Elucidation. Bulletin of the Chemical Society of Japan, 2014, 87, 677-692.	3.2	7
60	Quantum chemical calculations with the AIM approach applied to the π-interactions between hydrogen chalcogenides and naphthalene. RSC Advances, 2016, 6, 49651-49660.	3.6	7
61	CHAPTER 12.3. Hypervalent Chalcogen Compounds. , 2013, , 335-372.		7
62	Evaluation of Electron Population Terms for ã€^ <i>r</i> _{Se} ^{â^'3} 〉 _{4p} , ã€^ <i>r</i> _S ^{â''3} 〉 _{3p} , and ã€^ <i>r</i> _O ^{â^'3} 〉 _{2p} : How Do HOMO and LUMO Shrink or Expand Depending on Nuclear Charges?. Chemistry - A European Journal, 2008, 14, 7278-7284.	3.3	5
63	Contributions from Atomic p(Se), d(Se), and f(Se) Orbitals to Absolute Paramagnetic Shielding Tensors in Neutral and Charged SeH _{<i>n</i>} and Some Oxides Including the Effect of Methyl and Halogen Substitutions on Ïf ^p (Se). Chemistry - A European Journal, 2008, 14, 9647-9655.	3.3	5
64	Linear Four-Chalcogen Interactions in Radical Cationic and Dicationic Dimers of 1,5-(Dichalcogena)canes: Nature of the Interactions Elucidated by QTAIM Dual Functional Analysis with QC Calculations. Journal of Physical Chemistry A, 2017, 121, 2482-2496.	2.5	5
65	Intrinsic Dynamic Nature of Neutral Hydrogen Bonds Elucidated with QTAIM Dual Functional Analysis: Role of the Compliance Force Constants and QTAIMâ€DFA Parameters in Stability. ChemistryOpen, 2018, 7, 565-575.	1.9	5
66	Behavior of the E–E' Bonds (E, E' = S and Se) in Glutathione Disulfide and Derivatives Elucidated by Quantum Chemical Calculations with the Quantum Theory of Atoms-in-Molecules Approach. Molecules, 2018, 23, 443.	3.8	5
67	Effects from Basis Sets and Levels of Calculations on the Nature of Interactions Predicted by QTAIM Dual Functional Analysis with QTAIM Functions. ChemistrySelect, 2019, 4, 6198-6208.	1.5	5
68	P(O, S, Se, and Te)–Ĩ€(Ar) Conjugations as Factors to Control Fine Structures of 1-(Chalcogena)naphthalenes. Phosphorus, Sulfur and Silicon and the Related Elements, 2010, 185, 1031-1045.	1.6	4
69	Photoinduced Regio- and Stereoselective Introduction of Phenylchalcogeno Moieties to Ethynylferrocene. Bulletin of the Chemical Society of Japan, 2014, 87, 550-552.	3.2	4
70	Dynamic and static behavior of the E–E′ bonds (E, E′ = S and Se) in cystine and derivatives, elucidated by AIM dual functional analysis. RSC Advances, 2015, 5, 11534-11540.	3.6	4
71	Behavior of interactions between hydrogen chalcogenides and an anthracene ï€-system elucidated by QTAIM dual functional analysis with QC calculations. RSC Advances, 2017, 7, 31858-31865.	3.6	4
72	Behavior of Intramolecular Ï€â€Ï€ Interactions with Doubly Degenerated Bond Paths Between Carbon Atoms in Opposite Benzene Rings of Diethenodihydronaphthalenes by QTAIM Approach. ChemistrySelect, 2017, 2, 90-100.	1.5	4

#	Article	IF	CITATIONS
73	Dichlorosilylene Transfer to aP-Fluorophosphaalkene: The Route to aC-Dichlorofluorosilyl-Functionalized Dialkyldiphosphene. European Journal of Inorganic Chemistry, 2017, 2017, 1526-1536.	2.0	4
74	Nature ofE2X2σ(4c–6e) of theXE—EXtype at naphthalene 1,8-positions and model, elucidated by X-ray crystallographic analysis and QC calculations with the QTAIM approach. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2017, 73, 265-275.	1.1	4
75	Behavior of Multi-HBs in Acetic Acid Dimer and Related Species: QTAIM Dual Functional Analysis Employing Perturbed Structures Generated Using Coordinates from Compliance Force Constants. Bulletin of the Chemical Society of Japan, 2019, 92, 87-96.	3.2	4
76	Intrinsic Dynamic and Static Nature of π··Äë Interactions in Fused Benzene-Type Helicenes and Dimers, Elucidated with QTAIM Dual Functional Analysis. Nanomaterials, 2022, 12, 321.	4.1	4
77	Origin of ⁷⁷ Se NMR Chemical Shifts Revealed for Pre-α, α, β, and γ Effects. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 1067-1071.	1.6	3
78	Dynamic and Static Behavior of E–E' Bonds in Neutral and Charged Forms of HEE'H, MeEE'Me, and <i>Cyclo</i> â€1,2â€EE'(CH ₂) ₃ (E, E' = O, S, Se, and Te) Elucidated by AIM Dual Functional Analysis. Heteroatom Chemistry, 2014, 25, 449-472.	0.7	3
79	Intramolecular π–π Interactions in Diethanodihydronaphthalene and Derivatives: Dynamic and Static Behavior of the Interactions Elucidated by QTAIM Dual Functional Analysis. ChemistrySelect, 2016, 1, 2344-2353.	1.5	3
80	Behaviour of the XH-*-ï€ and YX-*-ï€ interactions (X, Y = F, Cl, Br and I) in the coronene ï€-system, as elucidated by QTAIM dual functional analysis with QC calculations. RSC Advances, 2018, 8, 16349-16361.	3.6	3
81	H/D Isotope Effect on 77Se NMR Chemical Shifts in 8-Methyl-1-(arylselanyl)naphthalenes and Related Selenides: Nonbonded C─H—Se Through-Space Versus Through-Bond Mechanisms. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 1481-1495.	1.6	2
82	Dynamic and Static Behavior of Intramolecular π-π Interactions in [2.2]- and [3.3]Cyclophanes, Elucidated by QTAIM Dual Functional Analysis with QC Calculations. ChemistrySelect, 2017, 2, 1774-1782.	1.5	2
83	Relativistic Effect on 1 J (M,C) in Me4 M, Me3 Mâ^' , Ph4 M, and Ph3 Mâ^' (M=Pb, Sn, Ge, Si, and/or C): Role of s-Type Lone Pair Orbitals in the Distinct Effect for the Anionic Species. ChemPhysChem, 2017, 18, 2466-2474.	2.1	2
84	Behavior of I ₄ σ(4c–6e) in tellurolane system and related species, elucidated by QTAIM dual functional analysis with QC calculations. Heteroatom Chemistry, 2018, 29, .	0.7	2
85	The nature of Gâ‹Ē–Y σ(3c–4e) in <i>o</i> -Me _n GCH ₂ C ₆ H ₄ EY (Me _n G =) Tj ETQq1 and compliance constants in noncovalent Gâ‹Ē interactions. RSC Advances. 2019. 9. 39435-39446.	1.0.7843 3.6	14 rgBT /Ov
86	Dynamic and static nature of activated interactions in transition states as elucidated by quantum theory of atomsâ€inâ€molecules dual functional analysis: A case of ligand exchange at the N of sulfonyliminoâ€î» 3 â€bromanes. International Journal of Quantum Chemistry, 2020, 120, e26073.	2.0	2
87	Intrinsic dynamic and static nature of each HB in the multi-HBs between nucleobase pairs and its behavior, elucidated with QTAIM dual functional analysis and QC calculations. RSC Advances, 2020, 10, 24730-24742.	3.6	2
88	The Structure of 1-(Arylthio)naphthalenes, Together with the Selenium and Oxygen Derivatives in Crystals and Solutions. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1431-1432.	1.6	1
89	Fine Structures of 8-G-1-(

spectroscopic and theoretical investigations. New Journal of Chemistry, 2009, 33, 1588.

6

#	Article	IF	CITATIONS
91	Unusual Saddle-like Structure of (2-MeOC6H4CS)2S: Theoretical Studies and Comparison with its Oxygen Isologues. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2012, 638, 2508-2520.	1.2	1
92	Nature of intramolecular O–Hâ<ï€ interactions as elucidated by QTAIM dual functional analysis with QC calculations. RSC Advances, 2019, 9, 15521-15530.	3.6	1
93	Dynamic and Static Nature of Br ₄ <i>Ïf</i> (4c–6e) and Se ₂ Br ₅ <i>Ïf</i> (7c–10e) in the Selenanthrene System and Related Species Elucidated by QTAIM Dual Functional Analysis with QC Calculations. Bioinorganic Chemistry and Applications. 2020. 2020. 1-14.	4.1	1
94	Intrinsic Dynamic and Static Nature of Halogen Bonding in Neutral Polybromine Clusters, with the Structural Feature Elucidated by QTAIM Dual-Functional Analysis and MO Calculations. Molecules, 2021, 26, 2936.	3.8	1
95	How Do G–Se Nonbonded and Y–Se Through π -Bond Interactions Determine the Structures of 8-G-1-() Tj ET	Qq1 1 0.7	′84314 rg8⊤
96	Synthesis and Characterization of Monomeric Hexacoordinated Chalcogenonium Salts Bearing 2-(2-Pyridyl)phenyl Ligands. Bulletin of the Chemical Society of Japan, 2021, 94, 1192-1200.	3.2	0
97	Linear Multiselenium Interactions in Dicationic Oligomers of 1,5â€(Diselena)canes: Behavior of Se mc σ(m) Tj ET	Qq1 1 0.7	'84314 rgBT

28 Linear Multiselenium Interactions in Dicationic Oligomers of 1,5â€(Diselena)canes: Behavior of Se mc σ(m) Tj ETQqQ 0 0 rgBT /Overlocl