
F Javier Rivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6588866/publications.pdf Version: 2024-02-01

F INVIED RIVAS

#	Article	IF	CITATIONS
1	Monopersulfate in water treatment: Kinetics. Journal of Hazardous Materials, 2022, 430, 128383.	12.4	10
2	Immediate one-step lime precipitation process for the valorization of winery wastewater to agricultural purposes. Environmental Science and Pollution Research, 2021, 28, 18382-18391.	5.3	5
3	Photocatalytic ozonation in water treatment: Is there really a synergy between systems?. Water Research, 2021, 206, 117727.	11.3	11
4	Six Flux Model for the Central Lamp Reactor Applied to an External Four-Lamp Reactor. Catalysts, 2021, 11, 1190.	3.5	2
5	Modeling the Mineralization Kinetics of Visible Led Graphene Oxide/Titania Photocatalytic Ozonation of an Urban Wastewater Containing Pharmaceutical Compounds. Catalysts, 2020, 10, 1256.	3.5	4
6	On the role of a graphene oxide/titania catalyst, visible LED and ozone in removing mixtures of pharmaceutical contaminants from water and wastewater. Environmental Science: Water Research and Technology, 2020, 6, 2352-2364.	2.4	14
7	Peroxymonosulfate/solar radiation process for the removal of aqueous microcontaminants. Kinetic modeling, influence of variables and matrix constituents. Journal of Hazardous Materials, 2020, 400, 123118.	12.4	36
8	Kinetic model basis of ozone/light-based advanced oxidation processes: a pseudoempirical approach. Environmental Science: Water Research and Technology, 2020, 6, 1176-1185.	2.4	7
9	Catalytic and photocatalytic ozonation with activated carbon as technologies in the removal of aqueous micropollutants. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382, 111961.	3.9	16
10	Clopyralid degradation using solar-photocatalytic/ozone process with olive stone activated carbon. Journal of Environmental Chemical Engineering, 2019, 7, 102900.	6.7	14
11	Treatment of slaughterhouse wastewater by acid precipitation (H2SO4, HCl and HNO3) and oxidation (Ca(ClO)â,,, H2O2 and CaOâ,,). Journal of Environmental Management, 2019, 250, 109558.	7.8	17
12	Simulated solar driven photolytic ozonation for the oxidation of aqueous recalcitrant-to-ozone tritosulfuron. Transformation products and toxicity. Journal of Environmental Management, 2019, 233, 513-522.	7.8	11
13	Peroxymonosulfate promoted wet air oxidation of a real wastewater from a biodiesel production plant. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 118-126.	1.7	0
14	Simulated solar photo-assisted decomposition of peroxymonosulfate. Radiation filtering and operational variables influence on the oxidation of aqueous bezafibrate. Water Research, 2019, 162, 383-393.	11.3	21
15	Photocatalysis in an external four-lamp reactor: modelling and validation—dichloroacetic acid photo-oxidation in the presence of TiO2. International Journal of Environmental Science and Technology, 2019, 16, 6705-6716.	3.5	5
16	The added value of a zebrafish embryo–larval model in the assessment of wastewater tertiary treatments. Environmental Science: Water Research and Technology, 2019, 5, 2269-2279.	2.4	10
17	Sunlight driven photolytic ozonation as an advanced oxidation process in the oxidation of bezafibrate, cotinine and iopamidol. Water Research, 2019, 151, 226-242.	11.3	26
18	Chloride promoted oxidation of tritosulfuron by peroxymonosulfate. Chemical Engineering Journal, 2018, 349, 728-736.	12.7	47

#	Article	IF	CITATIONS
19	Removal of aqueous metazachlor, tembotrione, tritosulfuron and ethofumesate by heterogeneous monopersulfate decomposition on lanthanum-cobalt perovskites. Applied Catalysis B: Environmental, 2017, 200, 83-92.	20.2	51
20	Synergism between peroxymonosulfate and <scp>LaCoO₃â€TiO₂</scp> photocatalysis for oxidation of herbicides. Operational variables and catalyst characterization assessment. Journal of Chemical Technology and Biotechnology, 2017, 92, 2159-2170.	3.2	19
21	Photocatalytic ozonation of clopyralid, picloram and triclopyr. Kinetics, toxicity and influence of operational parameters. Journal of Chemical Technology and Biotechnology, 2016, 91, 51-58.	3.2	28
22	Monopersulfate photocatalysis under 365Ânm radiation. Direct oxidation and monopersulfate promoted photocatalysis of the herbicide tembotrione. Journal of Environmental Management, 2016, 181, 385-394.	7.8	19
23	Photocatalytic ozonation of pyridineâ€based herbicides by Nâ€doped titania. Journal of Chemical Technology and Biotechnology, 2016, 91, 1998-2008.	3.2	11
24	Private agenda and re-election incentives. Social Choice and Welfare, 2016, 46, 899-915.	0.8	2
25	Sustainable treatment of different high-strength cheese whey wastewaters: an innovative approach for atmospheric CO2 mitigation and fertilizer production. Environmental Science and Pollution Research, 2016, 23, 13062-13075.	5.3	27
26	Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification. Chemical Engineering Journal, 2016, 292, 72-81.	12.7	60
27	Agricultural reuse of cheese whey wastewater treated by NaOH precipitation for tomato production under several saline conditions and sludge management. Agricultural Water Management, 2016, 167, 62-74.	5.6	35
28	Mechanism design and bounded rationality: The case of type misreporting. Mathematical Social Sciences, 2015, 78, 6-13.	0.5	3
29	Photocatalytic elimination of aqueous 2-methyl-4-chlorophenoxyacetic acid in the presence of commercial and nitrogen-doped TiO2. International Journal of Environmental Science and Technology, 2015, 12, 513-526.	3.5	19
30	Iron-based catalysts for photocatalytic ozonation of some emerging pollutants of wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2015, 50, 553-62.	1.7	4
31	Reuse of pretreated cheese whey wastewater for industrial tomato production (Lycopersicon) Tj ETQq1 1 0.784	314 rgBT /	Overlock 10
32	Fenton-like application to pretreated cheese whey wastewater. Journal of Environmental Management, 2013, 129, 199-205.	7.8	33
33	Pretreated cheese whey wastewater management by agricultural reuse: Chemical characterization and response of tomato plants Lycopersicon esculentum Mill. under salinity conditions. Science of the Total Environment, 2013, 463-464, 943-951.	8.0	17
34	Probability matching and reinforcement learning. Journal of Mathematical Economics, 2013, 49, 17-21.	0.8	4
35	Cheese whey wastewater: Characterization and treatment. Science of the Total Environment, 2013, 445-446, 385-396.	8.0	438
36	Growth and development of tomato plants Lycopersicon Esculentum Mill. under different saline conditions by fertirrigation with pretreated cheese whey wastewater. Water Science and Technology, 2013, 67, 2033-2041.	2.5	14

#	Article	IF	CITATIONS
37	Combination of Black‣ight Photoâ€catalysis and Ozonation for Emerging Contaminants Degradation in Secondary Effluents. Chemical Engineering and Technology, 2013, 36, 492-499.	1.5	15
38	Impacts of Changing Operational Parameters of In Situ Chemical Oxidation (ISCO) on Removal of Aged PAHs from Soil. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	0
39	Percarbonate as a Hydrogen Peroxide Carrier in Soil Remediation Processes. Environmental Engineering Science, 2012, 29, 951-956.	1.6	40
40	Cheese whey management: A review. Journal of Environmental Management, 2012, 110, 48-68.	7.8	545
41	Aqueous pharmaceutical compounds removal by potassium monopersulfate. Uncatalyzed and catalyzed semicontinuous experiments. Chemical Engineering Journal, 2012, 192, 326-333.	12.7	77
42	Removal of emergent contaminants: Integration of ozone and photocatalysis. Journal of Environmental Management, 2012, 100, 10-15.	7.8	59
43	Aerobic Biodegradation of Precoagulated Cheese Whey Wastewater. Journal of Agricultural and Food Chemistry, 2011, 59, 2511-2517.	5.2	55
44	Application of advanced oxidation processes to doxycycline and norfloxacin removal from water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 944-951.	1.7	39
45	UV-C and UV-C/peroxide elimination of selected pharmaceuticals in secondary effluents. Desalination, 2011, 279, 115-120.	8.2	35
46	Contaminants abatement by ozone in secondary effluents. Evaluation of secondâ€order rate constants. Journal of Chemical Technology and Biotechnology, 2011, 86, 1058-1066.	3.2	30
47	Influence of oxygen and free radicals promoters on the UV-254nm photolysis of diclofenac. Chemical Engineering Journal, 2010, 163, 35-40.	12.7	30
48	UV-C photolysis of endocrine disruptors. The influence of inorganic peroxides. Journal of Hazardous Materials, 2010, 174, 393-397.	12.4	26
49	UV-C radiation based methods for aqueous metoprolol elimination. Journal of Hazardous Materials, 2010, 179, 357-362.	12.4	59
50	The effects of the market structure on the adoption of evolving technologies. Journal of Economic Dynamics and Control, 2010, 34, 2485-2493.	1.6	4
51	Treatment of Cheese Whey Wastewater: Combined Coagulationâ^'Flocculation and Aerobic Biodegradation. Journal of Agricultural and Food Chemistry, 2010, 58, 7871-7877.	5.2	95
52	Mineralization of bisphenol A by advanced oxidation processes. Journal of Chemical Technology and Biotechnology, 2009, 84, 589-594.	3.2	43
53	Supercritical CO2 extraction of PAHs on spiked soil. Journal of Hazardous Materials, 2009, 162, 777-784.	12.4	12
54	Remediation of PAH spiked soils: Concentrated H2O2 treatment/continuous hot water extraction–oxidation. Journal of Hazardous Materials, 2009, 168, 1359-1365.	12.4	15

#	Article	IF	CITATIONS
55	Ozone treatment of PAH contaminated soils: Operating variables effect. Journal of Hazardous Materials, 2009, 169, 509-515.	12.4	49
56	Wastewater recycling: Application of ozone based treatments to secondary effluents. Chemosphere, 2009, 74, 854-859.	8.2	27
57	Ozonation of the pharmaceutical compound ranitidine: Reactivity and kinetic aspects. Chemosphere, 2009, 76, 651-656.	8.2	32
58	Promoted wet air oxidation of polynuclear aromatic hydrocarbons. Journal of Hazardous Materials, 2008, 153, 792-798.	12.4	14
59	Comparison of different advanced oxidation processes (AOPs) in the presence of perovskites. Journal of Hazardous Materials, 2008, 155, 407-414.	12.4	33
60	Polycyclic aromatic hydrocarbons sorption on soils: Some anomalous isotherms. Journal of Hazardous Materials, 2008, 158, 375-383.	12.4	21
61	Photocatalytic ozonation of phenolic wastewaters: Syringic acid, tyrosol and gallic acid. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2007, 43, 61-69.	1.7	12
62	Photocatalytic promoted oxidation of phenolic mixtures: An insight into the operating and mechanistic aspects. Water Research, 2007, 41, 4672-4684.	11.3	35
63	Photocatalysis of fluorene adsorbed onto TiO2. Chemosphere, 2007, 69, 595-604.	8.2	12
64	Photocatalytic Ozonation of Winery Wastewaters. Journal of Agricultural and Food Chemistry, 2007, 55, 9944-9950.	5.2	59
65	Ozonation of phenolic wastewaters in the presence of a perovskite type catalyst. Applied Catalysis B: Environmental, 2007, 74, 203-210.	20.2	60
66	Effects of Different Catalysts on the Ozonation of Pyruvic Acid in Water. Ozone: Science and Engineering, 2006, 28, 229-235.	2.5	12
67	Adsorption of landfill leachates onto activated carbonEquilibrium and kinetics. Journal of Hazardous Materials, 2006, 131, 170-178.	12.4	56
68	Polycyclic aromatic hydrocarbons sorbed on soils: A short review of chemical oxidation based treatments. Journal of Hazardous Materials, 2006, 138, 234-251.	12.4	258
69	Perovskite catalytic ozonation of pyruvic acid in waterOperating conditions influence and kinetics. Applied Catalysis B: Environmental, 2006, 62, 93-103.	20.2	47
70	Catalytic ozonation of phenolic compoundsThe case of gallic acid. Applied Catalysis B: Environmental, 2006, 67, 177-186.	20.2	55
71	Photocatalytic ozonation of gallic acid in water. Journal of Chemical Technology and Biotechnology, 2006, 81, 1787-1796.	3.2	28
72	Fluorene Oxidation by Coupling of Ozone, Radiation, and Semiconductors:Â A Mathematical Approach to the Kinetics. Industrial & Engineering Chemistry Research, 2006, 45, 166-174.	3.7	39

5

#	Article	IF	CITATIONS
73	Phenol and substituted phenols AOPs remediation. Journal of Hazardous Materials, 2005, 119, 99-108.	12.4	141
74	Comparison between photocatalytic ozonation and other oxidation processes for the removal of phenols from water. Journal of Chemical Technology and Biotechnology, 2005, 80, 973-984.	3.2	91
75	Kinetics of the Ozone-p-Chlorobenzoic Acid Reaction. Ozone: Science and Engineering, 2005, 27, 3-9.	2.5	11
76	Pyruvic Acid Removal from Water by the Simultaneous Action of Ozone and Activated Carbon. Ozone: Science and Engineering, 2005, 27, 159-169.	2.5	28
77	Fenton's Oxidation of Food Processing Wastewater Components. Kinetic Modeling of Protocatechuic Acid Degradation. Journal of Agricultural and Food Chemistry, 2005, 53, 10097-10104.	5.2	31
78	Oxone-Promoted Wet Air Oxidation of Landfill Leachates. Industrial & Engineering Chemistry Research, 2005, 44, 749-758.	3.7	52
79	Study of Different Integrated Physicalâ^'Chemical + Adsorption Processes for Landfill Leachate Remediation. Industrial & Engineering Chemistry Research, 2005, 44, 2871-2878.	3.7	32
80	Photocatalytic Enhanced Oxidation of Fluorene in Water with Ozone. Comparison with Other Chemical Oxidation Methods. Industrial & Engineering Chemistry Research, 2005, 44, 3419-3425.	3.7	27
81	Iron type catalysts for the ozonation of oxalic acid in water. Water Research, 2005, 39, 3553-3564.	11.3	217
82	A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water. Applied Catalysis B: Environmental, 2004, 47, 101-109.	20.2	124
83	Simazine Fenton's oxidation in a continuous reactor. Applied Catalysis B: Environmental, 2004, 48, 249-258.	20.2	45
84	Stabilized leachates: sequential coagulation–flocculation + chemical oxidation process. Journal of Hazardous Materials, 2004, 116, 95-102.	12.4	137
85	Wet Air and Extractive Ozone Regeneration of 4-Chloro-2-methylphenoxyacetic Acid Saturated Activated Carbons. Industrial & Engineering Chemistry Research, 2004, 43, 4159-4165.	3.7	8
86	Aqueous Ozone Decomposition Onto a Co2O3-Alumina Supported Catalyst. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 2915-2924.	1.7	4
87	Wet peroxide degradation of atrazine. Chemosphere, 2004, 54, 71-78.	8.2	18
88	Incidence of an Ozonation Stage on the Treatment of Cherry Stillage by Activated Sludge. Ozone: Science and Engineering, 2004, 26, 257-266.	2.5	3
89	Aqueous ozone decomposition onto a Co2O3-alumina supported catalyst. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, 39, 2915-24.	1.7	0
90	Mineralization improvement of phenol aqueous solutions through heterogeneous catalytic ozonation. Journal of Chemical Technology and Biotechnology, 2003, 78, 1225-1233.	3.2	44

#	Article	IF	CITATIONS
91	Treatment of brines by combined Fenton's reagent–aerobic biodegradation. Journal of Hazardous Materials, 2003, 96, 259-276.	12.4	37
92	Optimisation of Fenton's reagent usage as a pre-treatment for fermentation brines. Journal of Hazardous Materials, 2003, 96, 277-290.	12.4	60
93	Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 2. Heterogeneous Catalytic Ozonation. Industrial & Engineering Chemistry Research, 2003, 42, 3218-3224.	3.7	81
94	Homogeneous Catalyzed Ozone Decomposition in the Presence of Co(II) Ozone: Science and Engineering, 2003, 25, 261-271.	2.5	11
95	Removal of the Herbicide MCPA by Commercial Activated Carbons:Â Equilibrium, Kinetics, and Reversibility. Industrial & Engineering Chemistry Research, 2003, 42, 1076-1086.	3.7	55
96	Ozone-Enhanced Oxidation of Oxalic Acid in Water with Cobalt Catalysts. 1. Homogeneous Catalytic Ozonation. Industrial & Engineering Chemistry Research, 2003, 42, 3210-3217.	3.7	64
97	Stabilized leachates: ozone-activated carbon treatment and kinetics. Water Research, 2003, 37, 4823-4834.	11.3	111
98	Fenton-like Oxidation of Landfill Leachate. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2003, 38, 371-379.	1.7	40
99	An Attempt to Model the Kinetics of the Ozonation of Simazine in Water. Industrial & Engineering Chemistry Research, 2002, 41, 1723-1732.	3.7	30
100	Kinetics of Heterogeneous Catalytic Ozone Decomposition in Water on an Activated Carbon. Ozone: Science and Engineering, 2002, 24, 227-237.	2.5	130
101	Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon. Industrial & Engineering Chemistry Research, 2002, 41, 6510-6517.	3.7	133
102	Reply to comment on "Oxidation of ϕhydroxybenzoic acid by Fenton's reagent― Water Research, 2002, 36, 4942.	11.3	1
103	Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental, 2002, 39, 221-231.	20.2	194
104	Bioaccumulation of palladium byDesulfovibrio desulfuricans. Journal of Chemical Technology and Biotechnology, 2002, 77, 593-601.	3.2	109
105	Use of the axial dispersion model to describe the O3and O3 /H2O2advanced oxidation of alachlor in water. Journal of Chemical Technology and Biotechnology, 2002, 77, 584-592.	3.2	11
106	Co-oxidation of p-hydroxybenzoic acid and atrazine by the Fenton's like system Fe(III)/H2O2. Journal of Hazardous Materials, 2002, 91, 143-157.	12.4	24
107	Chemical-Biological Treatment of Table Olive Manufacturing Wastewater. Journal of Environmental Engineering, ASCE, 2001, 127, 611-619.	1.4	28
108	Treatment of Olive Oil Mill Wastewater by Fenton's Reagent. Journal of Agricultural and Food Chemistry, 2001, 49, 1873-1880.	5.2	134

#	Article	IF	CITATIONS
109	Oxidation of p-hydroxybenzoic acid by Fenton's reagent. Water Research, 2001, 35, 387-396.	11.3	197
110	HOMOGENEOUS CATALYZED OZONATION OF SIMAZINE. EFFECT OF Mn(II) AND Fe(II). Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 317-330.	1.5	28
111	Supercritical Water Oxidation of Olive Oil Mill Wastewater. Industrial & Engineering Chemistry Research, 2001, 40, 3670-3674.	3.7	48
112	Wet Air Oxidation Of Wastewater From Olive Oil Mills. Chemical Engineering and Technology, 2001, 24, 415-421.	1.5	36
113	Treatment of High Strength Distillery Wastewater (Cherry Stillage) by Integrated Aerobic Biological Oxidation and Ozonation. Biotechnology Progress, 2001, 17, 462-467.	2.6	64
114	SIMAZINE REMOVAL FROM WATER IN A CONTINUOUS BUBBLE COLUMN BY O3AND O3/H2O2. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2001, 36, 809-819.	1.5	12
115	Determination of Kinetic Parameters of Ozone During Oxidations of Alachlor in Water. Water Environment Research, 2000, 72, 689-697.	2.7	15
116	Joint Treatment of Wastewater from Table Olive Processing and Urban Wastewater. Integrated Ozonation - Aerobic Oxidation. Chemical Engineering and Technology, 2000, 23, 177-181.	1.5	32
117	Chemical and photochemical degradation of acenaphthylene. Intermediate identification. Journal of Hazardous Materials, 2000, 75, 89-98.	12.4	64
118	Kinetic modelling of aqueous atrazine ozonation processes in a continuous flow bubble contactor. Journal of Hazardous Materials, 2000, 80, 189-206.	12.4	30
119	Comparison of Different Treatments for Alachlor Removal from Water. Bulletin of Environmental Contamination and Toxicology, 2000, 65, 668-674.	2.7	5
120	Joint aerobic biodegradation of wastewater from table olive manufacturing industries and urban wastewater. Bioprocess and Biosystems Engineering, 2000, 23, 0283-0286.	3.4	17
121	The use of ozone as a gas tracer for kinetic modeling of aqueous environmental ozonation processes. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 701-714.	1.7	0
122	Two-Step Wastewater Treatment: Sequential Ozonation - Aerobic Biodegradation. Ozone: Science and Engineering, 2000, 22, 617-636.	2.5	16
123	Kinetics of simazine advanced oxidation in water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2000, 35, 439-454.	1.5	25
124	Kinetics Of Competitive Ozonation Of Some Phenolic Compounds Present In Wastewater From Food Processing Industries. Ozone: Science and Engineering, 2000, 22, 167-183.	2.5	33
125	Ozone remediation of some phenol compounds present in food processing wastewater. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 681-699.	1.7	8
126	Aqueous degradation of VOCs in the ozone combined with hydrogen peroxide or UV radiation processes. 2.Kinetic modeling. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1999, 34, 673-693.	1.7	5

#	Article	IF	CITATIONS
127	Atrazine removal by ozonation processes in surface waters. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 1999, 34, 449-468.	1.5	13
128	Aqueous degradation of VOCs in the ozone combined with hydrogen peroxide or UV radiation processes1. Experimental results. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 1999, 34, 649-671.	1.7	3
129	Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73, 143-160.	12.7	232
130	Use of Ozone to Remove Alachlor from Surface Water. Bulletin of Environmental Contamination and Toxicology, 1999, 62, 324-329.	2.7	15
131	Use of Ozone and Hydrogen Peroxide to Remove Alachlor from Surface Water. Bulletin of Environmental Contamination and Toxicology, 1999, 63, 9-14.	2.7	9
132	Degradation of maleic acid in a wet air oxidation environment in the presence and absence of a platinum catalyst. Applied Catalysis B: Environmental, 1999, 22, 279-291.	20.2	19
133	Hydrogen peroxide promoted wet air oxidation of phenol: influence of operating conditions and homogeneous metal catalysts. , 1999, 74, 390-398.		64
134	A Kinetic Model for Advanced Oxidation Processes of Aromatic Hydrocarbons in Water:Â Application to Phenanthrene and Nitrobenzene. Industrial & Engineering Chemistry Research, 1999, 38, 4189-4199.	3.7	84
135	Fenton Reagent Advanced Oxidation of Polynuclear Aromatic Hydrocarbons in Water. Water, Air, and Soil Pollution, 1998, 105, 685-700.	2.4	88
136	Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53, 2575-2586.	3.8	110
137	Aqueous degradation of atrazine and some of its main by-products with ozone/hydrogen peroxide. , 1998, 71, 345-355.		37
138	Wet Air Oxidation of Phenol. Chemical Engineering Research and Design, 1997, 75, 257-265.	5.6	69
139	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 3. UV Radiation Combined with Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 1996, 35, 883-890.	3.7	84
140	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 4. Ozone Combined with Hydrogen Peroxide. Industrial & Engineering Chemistry Research, 1996, 35, 891-898.	3.7	49
141	Advanced oxidation of polynuclear aromatic hydrocarbons in natural waters. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1996, 31, 2193-2210.	0.1	3
142	Aqueous uv radiation and uv/h ₂ o ₂ oxidation of atrazine first degradation products: Deethylatrazine and deisopropylatrazine. Environmental Toxicology and Chemistry, 1996, 15, 868-872.	4.3	38
143	AQUEOUS UV RADIATION AND UV/H2O2 OXIDATION OF ATRAZINE FIRST DEGRADATION PRODUCTS: DEETHYLATRAZINE AND DEISOPROPYLATRAZINE. Environmental Toxicology and Chemistry, 1996, 15, 868.	4.3	13
144	Application of photochemical reactor models to UV irradiation of trichloroethylene in water. Chemosphere, 1995, 31, 2873-2885.	8.2	12

#	Article	IF	CITATIONS
145	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 2. UV Radiation and Ozonation in the Presence of UV Radiation. Industrial & Engineering Chemistry Research, 1995, 34, 1607-1615.	3.7	150
146	Oxidation of Polynuclear Aromatic Hydrocarbons in Water. 1. Ozonation. Industrial & Engineering Chemistry Research, 1995, 34, 1596-1606.	3.7	62
147	Oxidation of mecoprop in water with ozone and ozone combined with hydrogen peroxide. Industrial & Engineering Chemistry Research, 1994, 33, 125-136.	3.7	53
148	Direct, radical and competitive reactions in the ozonation of water micropollutants. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1993, 28, 1947-1976.	0.1	9