Huihui Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6588221/publications.pdf

Version: 2024-02-01

126 papers	2,216 citations	27 h-index	276875 41 g-index
128	128	128	1916
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Side Polished Fiber: A Versatile Platform for Compact Fiber Devices and Sensors. Photonic Sensors, 2023, 13, .	5.0	12
2	Wavefront shaping for reconfigurable beam steering in lithium niobate multimode waveguide. Optics Letters, 2022, 47, 329.	3.3	2
3	Design of High-Speed Mid-Infrared Electro-Optic Modulator Based on Thin Film Lithium Niobate. IEEE Photonics Journal, 2022, 14, 1-6.	2.0	4
4	SnSe-Coated Microfiber Resonator for All-Optical Modulation. Nanomaterials, 2022, 12, 694.	4.1	1
5	Ultrafast Microfiber Humidity Sensor Based on Three Dimensional Molybdenum Disulfide Network Cladding. Frontiers in Physics, 2022, 10, .	2.1	O
6	Gold Enhanced Graphene-Based Photodetector on Optical Fiber with Ultrasensitivity over Near-Infrared Bands. Nanomaterials, 2022, 12, 124.	4.1	4
7	Correction to "Broadband Light Amplitude Tuning Characteristics of SnSe ₂ Coated Microfiber―[Nov 20 6089-6096]. Journal of Lightwave Technology, 2022, 40, 4058-4058.	4.6	O
8	Electric Field Sensor Based on High Q Fano Resonance of Nano-Patterned Electro-Optic Materials. Photonics, 2022, 9, 431.	2.0	3
9	Turnâ€On Circularly Polarized Luminescence in Metal–Organic Frameworks. Advanced Optical Materials, 2021, 9, 2002096.	7.3	36
10	Plasmonic Helical Nanoantenna As a Converter between Longitudinal Fields and Circularly Polarized Waves. Nano Letters, 2021, 21, 3410-3417.	9.1	16
11	Highly efficient second harmonic generation of thin film lithium niobate nanograting near bound states in the continuum. Nanotechnology, 2021, 32, 325207.	2.6	51
12	Tin Disulfide-Coated Microfiber for Humidity Sensing with Fast Response and High Sensitivity. Crystals, $2021,11,648.$	2.2	2
13	Recent progress of second harmonic generation based on thin film lithium niobate [Invited]. Chinese Optics Letters, 2021, 19, 060012.	2.9	21
14	Resonance-enhanced all-optical modulation of WSe ₂ -based micro-resonator. Nanophotonics, 2020, 9, 2387-2396.	6.0	17
15	Optical fiber bio-sensor for phospholipase using liquid crystal. Biosensors and Bioelectronics, 2020, 170, 112547.	10.1	18
16	High Light Tuning Efficiency in All Optical Inâ,, Seâ, f Coated Micro Knot Resonator Structure. IEEE Access, 2020, 8, 190009-190016.	4.2	1
17	High-sensitivity fiber-optic humidity sensor based on microfiber overlaid with niobium disulfide. Journal of Materials Science, 2020, 55, 16576-16587.	3.7	12
18	An Optical Switch Based on Electro-Optic Mode Deflection in Lithium Niobate Waveguide. IEEE Photonics Technology Letters, 2020, 32, 1295-1298.	2.5	22

#	Article	IF	CITATIONS
19	Broadband Light Amplitude Tuning Characteristics of SnSe ₂ Coated Microfiber. Journal of Lightwave Technology, 2020, 38, 6089-6096.	4.6	4
20	Hybrid plasmonic–phononic cavity design for enhanced optomechanical coupling in lithium niobate. Applied Nanoscience (Switzerland), 2020, 10, 1395-1407.	3.1	3
21	Ultrafast freestanding microfiber humidity sensor based on three-dimensional graphene network cladding. Optics Express, 2020, 28, 4362.	3.4	9
22	Residual thickness enhanced core-removed D-shaped single-mode fiber and its application for VOC evaporation monitoring. Optics Express, 2020, 28, 15641.	3.4	8
23	Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics, 2020, 9, 3575-3585.	6.0	55
24	Accurate measurement of nanomechanical motion in a fiber-taper nano-optomechanical system. Applied Physics Letters, 2019, 115, .	3.3	5
25	Subwavelength polarization optics via individual and coupled helical traveling-wave nanoantennas. Light: Science and Applications, 2019, 8, 76.	16.6	26
26	All-Optical Tuning of Micro-Resonator Overlaid With MoTe ₂ Nanosheets. Journal of Lightwave Technology, 2019, 37, 3637-3646.	4.6	9
27	High sensitivity refractive index sensor based on micro-fiber with micro-arched transition. Optical Fiber Technology, 2019, 50, 13-18.	2.7	3
28	Sensitivity-Enhanced Fiber Plasmonic Sensor Utilizing Molybdenum Disulfide Nanosheets. Journal of Physical Chemistry C, 2019, 123, 10536-10543.	3.1	18
29	Long-Range Surface Plasmon Resonance Sensor Based on Side-Polished Fiber for Biosensing Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-9.	2.9	48
30	Fano Resonance on Nanostructured Lithium Niobate for Highly Efficient and Tunable Second Harmonic Generation. Nanomaterials, 2019, 9, 69.	4.1	29
31	Enhanced Imbert–Fedorov shifts of higher-order Laguerre–Gaussian beams by lossy mode resonance. Optics Communications, 2019, 431, 136-141.	2.1	12
32	Side-polished few-mode fiber based surface plasmon resonance biosensor. Optics Express, 2019, 27, 11348.	3.4	52
33	Broadband all-light-control with WS ₂ coated microfibers. Optics Express, 2019, 27, 12817.	3.4	8
34	Tunable asymmetric spin splitting by black phosphorus sandwiched epsilon-near-zero-metamaterial in the terahertz region. Optics Express, 2019, 27, 15868.	3.4	24
35	Electron-plasmon interaction on lithium niobate with gold nanolayer and its field distribution dependent modulation. Optics Express, 2019, 27, 19852.	3.4	12
36	All-Optical Tuning of Light in WSe2-Coated Microfiber. Nanoscale Research Letters, 2019, 14, 353.	5.7	2

#	Article	IF	Citations
37	Measurement of Giant Spin Splitting of Reflected Gaussian Beams. IEEE Photonics Journal, 2018, 10, 1-7.	2.0	8
38	Halloysite Nanotube-Modified Plasmonic Interface for Highly Sensitive Refractive Index Sensing. ACS Applied Materials & Sensing: ACS	8.0	44
39	Plasmonic waveguide design for the enhanced forward stimulated brillouin scattering in diamond. Scientific Reports, 2018, 8, 88.	3.3	8
40	High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film. Sensors and Actuators B: Chemical, 2018, 255, 57-69.	7.8	98
41	Photonic spin Hall effect of monolayer black phosphorus in the Terahertz region. Nanophotonics, 2018, 7, 1929-1937.	6.0	55
42	High-sensitivity vector magnetic field sensor based on side-polished fiber plasmon and ferrofluid. Optics Letters, 2018, 43, 4743.	3.3	69
43	Sensing and Exploiting Static Femto-Newton Optical Forces by a Nanofiber with White-Light Interferometry. ACS Photonics, 2018, 5, 3205-3213.	6.6	9
44	Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS ₂) nanosheets overlayer. Photonics Research, 2018, 6, 485.	7.0	84
45	High performance all-fiber temperature sensor based on coreless side-polished fiber wrapped with polydimethylsiloxane. Optics Express, 2018, 26, 9686.	3.4	57
46	High-sensitivity humidity sensing of side-polished optical fiber with polymer nanostructure cladding. Applied Optics, 2018, 57, 2539.	1.8	12
47	Theoretical investigation of optical modulators based on graphene-coated side-polished fiber. Optics Express, 2018, 26, 13759.	3.4	27
48	Magnetic spin–orbit interaction of light. Light: Science and Applications, 2018, 7, 24.	16.6	31
49	All-fiber-optic VOC gas sensor based on side-polished fiber wavelength selectively coupled with cholesteric liquid crystal film. Sensors and Actuators B: Chemical, 2018, 273, 1816-1826.	7.8	48
50	Highly sensitive all-optical control of light in WS ₂ coated microfiber knot resonator. Optics Express, 2018, 26, 27650.	3.4	19
51	Electro-optic deflection in a lithium niobate quasi-single mode waveguide with microstructured electrodes. Optics Express, 2018, 26, 30100.	3.4	11
52	Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires. Optical Materials Express, 2018, 8, 3927.	3.0	29
53	Resonance-assisted light–control–light characteristics of SnS ₂ on a microfiber knot resonator with fast response. Photonics Research, 2018, 6, 1137.	7.0	19
54	Broadband light-control-light characteristics of WS2 on microfiber. , 2018, , .		0

#	Article	IF	CITATIONS
55	Electro-optic mode deflection based on a lithium niobate waveguide with microstructured electrodes., 2018,,.		1
56	Design and optimization of nano-column array based surface plasmon resonance sensor. Optical and Quantum Electronics, 2017, 49, 1.	3.3	9
57	Optimization of polishing parameters for optical coupler based on side-polished photonic crystal fiber. Optical and Quantum Electronics, 2017, 49, 1.	3.3	2
58	Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing. Optical and Quantum Electronics, 2017, 49, 1.	3.3	8
59	Long range surface plasmon resonance sensor based on side polished fiber with the buffer layer of magnesium fluoride. Optical and Quantum Electronics, 2017, 49, 1.	3 . 3	23
60	The chiral nanophotonic coupling in two crossed fibers. , 2017, , .		0
61	Indium Tin Oxide Coated Two-Mode Fiber for Enhanced SPR Sensor in Near-Infrared Region. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	24
62	The upper limit of the in-plane spin splitting of Gaussian beam reflected from a glass-air interface. Scientific Reports, 2017, 7, 1150.	3.3	29
63	Fabrication of Side-Polished Single Mode-Multimode-Single Mode Fiber and Its Characteristics of Refractive Index Sensing. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 238-245.	2.9	55
64	Modeling of halloysite-nanotube modified surface plasmon resonance sensor., 2017,,.		0
65	Fabrication of rGO-GO Long Period Fiber Grating Using Laser Reduction Method. IEEE Photonics Journal, 2017, 9, 1-9.	2.0	4
66	Temperature sensing of side-polished optical fiber with polymer nanostructure cladding., 2017,,.		0
67	Controllable symmetric and asymmetric spin splitting of Laguerre–Gaussian beams assisted by surface plasmon resonance. Optics Letters, 2017, 42, 4869.	3.3	19
68	Coreless side-polished fiber: a novel fiber structure for multimode interference and highly sensitive refractive index sensors. Optics Express, 2017, 25, 5352.	3.4	22
69	Reduced graphene oxide wrapped on microfiber and its light-control-light characteristics. Optics Express, 2017, 25, 5415.	3.4	10
70	Enhanced optical sensitivity of molybdenum diselenide (MoSe_2) coated side polished fiber for humidity sensing. Optics Express, 2017, 25, 9823.	3.4	42
71	Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring. Optics Express, 2017, 25, 28407.	3.4	35
72	All light-control-light properties of molybdenum diselenide (MoSe_2)-coated-microfiber. Optics Express, 2017, 25, 28536.	3.4	25

#	Article	IF	Citations
73	Azimuth angle orientation by side scattering for side-polishing of photonic crystal fibers. Optics Express, 2017, 25, 32504.	3.4	3
74	Micro fiber with cladding of titanium dioxide (TiO_2) nanoparticles and its violet light sensing. Optical Materials Express, 2017, 7, 264.	3.0	13
75	Tungsten disulfide wrapped on micro fiber for enhanced humidity sensing. Optical Materials Express, 2017, 7, 1686.	3.0	35
76	Tunable spin splitting of Laguerre–Gaussian beams in graphene metamaterials. Photonics Research, 2017, 5, 684.	7.0	69
77	Interlinked add-drop filter with amplitude modulation routing a fiber-optic microring to a lithium niobate microwaveguide. Optics Letters, 2017, 42, 1496.	3.3	8
78	Large spatial and angular spin splitting in a thin anisotropic $\hat{l}\mu$ -near-zero metamaterial. Optics Express, 2017, 25, 5196.	3.4	27
79	Giant spin splitting induced by orbital angular momentum in an epsilon-near-zero metamaterial slab. Optics Letters, 2017, 42, 3259.	3.3	32
80	Side polished fiber coated with molybdenum diselenide (MoSe2) for humidity sensing. , 2017, , .		2
81	Coreless side-polished fiber for multimode interference and highly sensitive refractive index sensing. , 2017, , .		0
82	Add-Drop Filter Based on Wavelength-Dependent Light Interlink between Lithium-Niobate Microwaveguide Chip and Microfiber Knot Ring. Crystals, 2016, 6, 67.	2.2	7
83	Electro-optic beam deflection based on a lithium niobate waveguide with microstructured serrated electrodes. Optics Letters, 2016, 41, 4739.	3.3	18
84	Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis. Optics Express, 2016, 24, 20196.	3.4	27
85	Reduced graphene oxide for fiber-optic toluene gas sensing. Optics Express, 2016, 24, 28290.	3.4	29
86	Side polished fiber with coated graphene sheet and its control characteristic of violet light. Optical Materials Express, 2016, 6, 2088.	3.0	9
87	Coupling between fiber-optic microring and lithium niobate microwaveguide chip towards photonic interlink devices. Proceedings of SPIE, 2016, , .	0.8	0
88	High sensitivity SPR sensor based on microfiber coated with gold nanowires. , 2016, , .		1
89	Fiber optic humidity sensing with few layers molybdenum disulfide. Proceedings of SPIE, 2016, , .	0.8	2
90	Coreless side polished fiber as ultra-sensitive refractive index sensor. Proceedings of SPIE, 2016, , .	0.8	1

#	Article	IF	Citations
91	Surface plasmon resonance fiber optical sensor based on Photonic Crystal and graphene., 2016,,.		1
92	Improvement of light extraction efficiency of GaN-based flip-chip LEDs by a double-sided spherical cap-shaped patterned sapphire substrate. , 2016, , .		2
93	Long range surface plasmon resonance sensor based on side polished fiber with a buffer layer of magnesium fluoride. , 2016, , .		0
94	Optimization of polished angle for optical coupler based on side-polished photonic crystal fiber. , 2016, , .		0
95	High-sensitivity optical sensing of temperature based on side-polished fiber with polymer nanoporous cladding. Optical Engineering, 2016, 55, 106123.	1.0	2
96	Theoretical analysis of polarization-coupled mode splitting in a single microfiber knot-ring resonator. Optical Engineering, 2016, 55, 066108.	1.0	4
97	Theoretical analysis of optical mode deflection in lithium niobate waveguide with serrated array electrodes. Optical and Quantum Electronics, 2016, 48, 1.	3.3	4
98	Fabrication and Characterization of a Colloidal Crystal Cladding Micro-Fiber. IEEE Photonics Technology Letters, 2016, 28, 406-409.	2.5	3
99	Simulation of mode deflection and reshaping in lithium niobate planar waveguide with serrated array electrodes., 2015,,.		0
100	Hybrid optical fiber add-drop filter based on wavelength dependent light coupling between micro/nano fiber ring and side-polished fiber. Scientific Reports, 2015, 5, 7710.	3.3	21
101	Optimal design of a fluorescence oxygen sensing probe based on multimode optical fibers. Optical and Quantum Electronics, 2015, 47, 2371-2379.	3.3	2
102	Double-sided hemispherical pattern design on patterned sapphire substrate of GaN-based LEDs. , 2015, , .		0
103	Highly sensitive surface plasmon resonance fiber sensor based on triangle gold nano-rod array. , 2015, , .		0
104	Design and optimization of surface plasmon resonance fiber sensor based on square gold nano-rod array. , 2015, , .		0
105	Microfiber With Methyl Blue-Functionalized Reduced Graphene Oxide and Violet Light Sensing. IEEE Photonics Technology Letters, 2015, 27, 798-801.	2.5	11
106	Design and optimization of surface plasmon resonance sensor based on multimode fiber. Optical and Quantum Electronics, 2015, 47, 1495-1502.	3.3	34
107	Side-polished-fiber based optical coupler assisted with a fused nano silica film. Applied Optics, 2015, 54, 1598.	1.8	16
108	Fiber temperature sensor with nanostructured cladding by TiO2 nanoparticles self-assembled onto a side polished optical fiber., 2015,,.		2

#	Article	IF	Citations
109	Optimized double-sided pattern design on a patterned sapphire substrate for flip-chip GaN-based light-emitting diodes. Optical Engineering, 2015, 54, 115108.	1.0	5
110	Reduced graphene oxide for fiber-optic humidity sensing. Optics Express, 2014, 22, 31555.	3.4	95
111	Optimization of the residual radius of the side-polished photonic crystal fiber coupler. , 2014, , .		0
112	Angular orientation of micro-structured fiber by side imaging analysis. , 2014, , .		0
113	Optical fiber with nanostructured cladding of TiO_2 nanoparticles self-assembled onto a side polished fiber and its temperature sensing. Optics Express, 2014, 22, 32502.	3.4	43
114	All-optically reconfigurable and tunable fiber surface grating for in-fiber devices: a wideband tunable filter. Optics Express, 2014, 22, 5950.	3.4	16
115	Numerical analysis of optical coupling characteristics of side-polished photonics crystal fiber and micro optical fiber with bending. , 2014, , .		0
116	Mode defletion in lithium niobate waveguide via elecctro-optic effect and its application for beam smoothing. , 2014, , .		1
117	Double-sided pattern design on patterned sapphire substrate of GaN-based LEDs. , 2014, , .		0
118	Design and optimization of multimode fiber sensor based on surface plasmon resonance. , 2014, , .		0
119	Side-polished fiber as a sensor for the determination of nematic liquid crystal orientation. Sensors and Actuators B: Chemical, 2014, 196, 663-669.	7.8	26
120	Numerical analysis of optical propagation characteristics of side-polished photonics crystal fiber. Optical and Quantum Electronics, 2014, 46, 1261-1268.	3.3	7
121	Sensitive Surface Plasmon Resonance biosensor based on a photonic crystal and bimetallic configuration. , 2014, , .		2
122	Optical and RF Characterization of a Lithium Niobate Photonic Crystal Modulator. IEEE Photonics Technology Letters, 2014, 26, 1332-1335.	2.5	20
123	All-fiber-optic temperature sensor based on reduced graphene oxide. Laser Physics Letters, 2014, 11, 035901.	1.4	51
124	Theoretical analysis of resonant mode splitting in a single microfiber knot-ring resonator. , 2013, , .		1
125	Integrated temperature sensor based on an enhanced pyroelectric photonic crystal. Optics Express, 2013, 21, 16311.	3.4	48
126	Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter. Applied Physics Letters, 2012, 101, .	3.3	25