David Bryder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6588143/publications.pdf

Version: 2024-02-01

51	5,429	20	45
papers	citations	h-index	g-index
60	60	60	8019 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Bmi1 induction protects hematopoietic stem cells against pronounced long-term hematopoietic stress. Experimental Hematology, 2022, 109, 35-44.	0.4	1
2	Antigen-Presenting B Cells Program the Efferent Lymph T Helper Cell Response. Frontiers in Immunology, 2022, 13, 813203.	4.8	1
3	A somatic mutation in moesin drives progression into acute myeloid leukemia. Science Advances, 2022, 8, eabm9987.	10.3	2
4	Stem Cells, Hematopoiesis and Lineage Tracing: Transplantation-Centric Views and Beyond. Frontiers in Cell and Developmental Biology, 2022, 10, 903528.	3.7	8
5	Concurrent stem- and lineage-affiliated chromatin programs precede hematopoietic lineage restriction. Cell Reports, 2022, 39, 110798.	6.4	6
6	Developmental cues license megakaryocyte priming in murine hematopoietic stem cells. Blood Advances, 2022, 6, 6228-6241.	5. 2	11
7	Reconciling Flux Experiments for Quantitative Modeling of Normal and Malignant Hematopoietic Stem/Progenitor Dynamics. Stem Cell Reports, 2021, 16, 741-753.	4.8	13
8	Continuous mitotic activity of primitive hematopoietic stem cells in adult mice. Journal of Experimental Medicine, 2020, 217, .	8.5	25
9	Enhancing Hematopoiesis from Murine Embryonic Stem Cells through MLL1-Induced Activation of a Rac/Rho/Integrin Signaling Axis. Stem Cell Reports, 2020, 14, 285-299.	4.8	8
10	The efficiency of murine MLL-ENL–driven leukemia initiation changes with age and peaks during neonatal development. Blood Advances, 2019, 3, 2388-2399.	5.2	19
11	Hif-1α Deletion May Lead to Adverse Treatment Effect in a Mouse Model ofÂMLL-AF9-Driven AML. Stem Cell Reports, 2019, 12, 112-121.	4.8	10
12	Transcriptome Based Projection of Single Cells to Uncover Development and Heterogeneity of Abnormal Hematopoietic Cells. Blood, 2019, 134, 2520-2520.	1.4	0
13	CD9 Marks Flt3+ Multipotent Hematopoietic Progenitors within Lsk Cells. Blood, 2019, 134, 2469-2469.	1.4	1
14	Immunophenotypic- and Molecular Analysis of Human Hematopoietic Stem and Progenitor Heterogeneity. Blood, 2019, 134, 3701-3701.	1.4	1
15	SAMD9 and SAMD9L in inherited predisposition to ataxia, pancytopenia, and myeloid malignancies. Leukemia, 2018, 32, 1106-1115.	7.2	89
16	Immunophenotypic Identification of Early Myeloerythroid Development. Methods in Molecular Biology, 2018, 1678, 301-319.	0.9	5
17	Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis. Journal of Experimental Medicine, 2018, 215, 1947-1963.	8.5	20
18	Immunoediting is not a primary transformation event in a murine model of MLL-ENL AML. Life Science Alliance, 2018, 1, e201800079.	2.8	5

#	Article	lF	Citations
19	Murine HSCs contribute actively to native hematopoiesis but with reduced differentiation capacity upon aging. ELife, $2018, 7, .$	6.0	77
20	Gain-of-function SAMD9L mutations cause a syndrome of cytopenia, immunodeficiency, MDS, and neurological symptoms. Blood, 2017, 129, 2266-2279.	1.4	152
21	Clonal reversal of ageing-associated stem cell lineage bias via a pluripotent intermediate. Nature Communications, 2017, 8, 14533.	12.8	36
22	ZFP521 regulates murine hematopoietic stem cell function and facilitates MLL-AF9 leukemogenesis in mouse and human cells. Blood, 2017, 130, 619-624.	1.4	20
23	The slippery slope of hematopoietic stem cell aging. Experimental Hematology, 2017, 56, 1-6.	0.4	15
24	Critical Modulation of Hematopoietic Lineage Fate by Hepatic Leukemia Factor. Cell Reports, 2017, 21, 2251-2263.	6.4	46
25	Molecular mechanisms underlying lineage bias in aging hematopoiesis. Seminars in Hematology, 2017, 54, 4-11.	3.4	58
26	Hepatic Leukemia Factor Maintains Quiescence of Hematopoietic Stem Cells and Protects the Stem Cell Pool during Regeneration. Cell Reports, 2017, 21, 3514-3523.	6.4	72
27	Potential Pitfalls of the Mx1-Cre System: Implications for Experimental Modeling of Normal and Malignant Hematopoiesis. Stem Cell Reports, 2016, 7, 11-18.	4.8	53
28	Cellular Barcoding Links B-1a B Cell Potential to a Fetal Hematopoietic Stem Cell State at the Single-Cell Level. Immunity, 2016, 45, 346-357.	14.3	84
29	Mitotic History Reveals Distinct Stem Cell Populations and Their Contributions to Hematopoiesis. Cell Reports, 2016, 14, 2809-2818.	6.4	55
30	Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias. PLoS ONE, 2016, 11, e0158369.	2.5	102
31	Probing Co-Operating Somatic Mutations in MLL-ENL Driven Leukemogenesis. Blood, 2016, 128, 2855-2855.	1.4	0
32	SCExV: a webtool for the analysis and visualisation of single cell qRT-PCR data. BMC Bioinformatics, 2015, 16, 320.	2.6	17
33	Probing hematopoietic stem cell function using serial transplantation: Seeding characteristics and the impact of stem cell purification. Experimental Hematology, 2015, 43, 812-817.e1.	0.4	11
34	Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation. Stem Cells Translational Medicine, 2015, 4, 186-194.	3.3	31
35	Hematopoietic Stem Cells Are Intrinsically Protected against MLL-ENL-Mediated Transformation. Cell Reports, 2014, 9, 1246-1255.	6.4	47
36	Efficient Ablation of Genes in Human Hematopoietic Stem and Effector Cells using CRISPR/Cas9. Cell Stem Cell, 2014, 15, 643-652.	11.1	406

#	Article	IF	CITATIONS
37	Induced Hematopoietic Stem Cells: Unlocking Restrictions in Lineage Potential and Self-renewal. Cell Stem Cell, 2014, 14, 555-556.	11.1	3
38	HIF-1α can act as a tumor suppressor gene in murine acute myeloid leukemia. Blood, 2014, 124, 3597-3607.	1.4	95
39	Socs2 Is Dispensable for BCR/ABL1-Induced Chronic Myeloid Leukemia-Like Disease in Mice and for Normal Hematopoietic Stem Cell Function,. Blood, 2011, 118, 3743-3743.	1.4	4
40	Diamond-Blackfan Anemia: Erythropoiesis Lost in Ribosome Biosynthesis. Blood, 2011, 118, SCI-2-SCI-2.	1.4	0
41	Enhanced Cytokine Responsiveness Counteracts Age-Induced Decline in Hematopoietic Stem Cell Function. Blood, 2011, 118, 2342-2342.	1.4	15
42	Shaping up a lineageâ€"lessons from B lymphopoesis. Current Opinion in Immunology, 2010, 22, 148-153.	5.5	21
43	Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5465-5470.	7.1	578
44	Chronic RPS19 Deficiency Leads to Bone Marrow Failure In a Mouse Model for Diamond-Blackfan Anemia. Blood, 2010, 116, 193-193.	1.4	18
45	A Novel Mouse Model for RPS19-Deficient Diamond-Blackfan Anemia Locates the Erythroid Defect at CFU-E / Proerythroblast Transition Blood, 2009, 114, 178-178.	1.4	2
46	Niche Recycling through Division-Independent Egress of Hematopoietic Stem Cells Blood, 2009, 114, 79-79.	1.4	0
47	Deciphering developmental stages of adult myelopoiesis. Cell Cycle, 2008, 7, 706-713.	2.6	14
48	Elucidation of the Phenotypic, Functional, and Molecular Topography of a Myeloerythroid Progenitor Cell Hierarchy. Cell Stem Cell, 2007, 1, 428-442.	11.1	565
49	Hematopoietic Stem Cells. American Journal of Pathology, 2006, 169, 338-346.	3.8	579
50	Cell intrinsic alterations underlie hematopoietic stem cell aging. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9194-9199.	7.1	972
51	Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential. Cell, 2005, 121, 295-306.	28.9	1,033