Stephane Boissinot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6587524/publications.pdf

Version: 2024-02-01

66 papers

3,116 citations

236925 25 h-index 52 g-index

75 all docs

75 docs citations

75 times ranked 3688 citing authors

#	Article	IF	Citations
1	The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature, 2011, 477, 587-591.	27.8	575
2	Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Research, 2006, 16 , $78-87$.	5.5	304
3	L1 (LINE-1) Retrotransposon Evolution and Amplification in Recent Human History. Molecular Biology and Evolution, 2000, 17, 915-928.	8.9	285
4	Revisiting the evolution of mouse LINE-1 in the genomic era. Mobile DNA, 2013, 4, 3.	3.6	149
5	L1 (LINE-1) retrotransposon diversity differs dramatically between mammals and fish. Trends in Genetics, 2004, 20, 9-14.	6.7	137
6	Fitness cost of LINE-1 (L1) activity in humans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 9590-9594.	7.1	124
7	Adaptive Evolution in LINE-1 Retrotransposons. Molecular Biology and Evolution, 2001, 18, 2186-2194.	8.9	100
8	The Insertional History of an Active Family of L1 Retrotransposons in Humans. Genome Research, 2004, 14, 1221-1231.	5.5	100
9	On the Population Dynamics of Junk: A Review on the Population Genomics of Transposable Elements. Genes, 2019, 10, 419.	2.4	94
10	Discordant Phylogeographic Patterns Between the $\langle i \rangle Y \langle i \rangle$ Chromosome and Mitochondrial DNA in the House Mouse: Selection on the $\langle i \rangle Y \langle i \rangle$ Chromosome?. Genetics, 1997, 146, 1019-1034.	2.9	91
11	Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene, 2007, 390, 206-213.	2.2	71
12	Molecular Genetics of Spectral Tuning in New World Monkey Color Vision. Journal of Molecular Evolution, 1998, 46, 697-702.	1.8	64
13	The Evolutionary Dynamics of Autonomous Non-LTR Retrotransposons in the Lizard Anolis Carolinensis Shows More Similarity to Fish Than Mammals. Molecular Biology and Evolution, 2009, 26, 1811-1822.	8.9	58
14	Independent and parallel lateral transfer of DNA transposons in tetrapod genomes. Gene, 2010, 449, 85-94.	2.2	57
15	The Evolution of Line-1 in Vertebrates. Genome Biology and Evolution, 2016, 8, evw247.	2.5	54
16	The Genomic Distribution of L1 Elements: The Role of Insertion Bias and Natural Selection. Journal of Biomedicine and Biotechnology, 2006, 2006, 1-5.	3.0	49
17	Accumulation and Rapid Decay of Non-LTR Retrotransposons in the Genome of the Three-Spine Stickleback. Genome Biology and Evolution, 2012, 4, 687-702.	2.5	48
18	Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species. PLoS ONE, 2012, 7, e38474.	2.5	40

#	Article	IF	CITATIONS
19	The Evolution and Diversity of DNA Transposons in the Genome of the Lizard Anolis carolinensis. Genome Biology and Evolution, $2011, 3, 1-14$.	2.5	39
20	Different Rates of LINE-1 (L1) Retrotransposon Amplification and Evolution in New World Monkeys. Journal of Molecular Evolution, 2004, 58, 122-130.	1.8	38
21	Hiding in the highlands: Evolution of a frog species complex of the genus Ptychadena in the Ethiopian highlands. Molecular Phylogenetics and Evolution, 2014, 71, 157-169.	2.7	34
22	Multiple and Independent Phases of Transposable Element Amplification in the Genomes of Piciformes (Woodpeckers and Allies). Genome Biology and Evolution, 2018, 10, 1445-1456.	2.5	34
23	Genetic variation in the green anole lizard (Anolis carolinensis) reveals island refugia and a fragmented Florida during the quaternary. Genetica, 2014, 142, 59-72.	1.1	32
24	The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes, 2021, 12, 918.	2.4	31
25	Long-Term Balancing Selection at the West Nile Virus Resistance Gene, Oas1b, Maintains Transspecific Polymorphisms in the House Mouse. Molecular Biology and Evolution, 2008, 25, 1609-1618.	8.9	30
26	Comparative Phylogeography of Ethiopian anurans: impact of the Great Rift Valley and Pleistocene climate change. BMC Evolutionary Biology, 2016, 16, 206.	3.2	30
27	Lizards and LINEs: Selection and Demography Affect the Fate of L1 Retrotransposons in the Genome of the Green Anole (Anolis carolinensis). Genome Biology and Evolution, 2013, 5, 1754-1768.	2.5	29
28	Recent Secondary Contacts, Linked Selection, and Variable Recombination Rates Shape Genomic Diversity in the Model Species Anolis carolinensis. Genome Biology and Evolution, 2019, 11, 2009-2022.	2.5	29
29	The transposable element profile of the Anolis genome. Mobile Genetic Elements, 2011, 1, 107-111.	1.8	27
30	Developing a community-based genetic nomenclature for anole lizards. BMC Genomics, 2011, 12, 554.	2.8	23
31	LINE Insertion Polymorphisms are Abundant but at Low Frequencies across Populations of Anolis carolinensis. Frontiers in Genetics, 2017, 8, 44.	2.3	23
32	Long-Term Balancing Selection at the Antiviral Gene OAS1 in Central African Chimpanzees. Molecular Biology and Evolution, 2012, 29, 1093-1103.	8.9	22
33	Neutral nuclear variation in <scp>B</scp> aboons (genus <scp><i>P</i></scp> <i>apio</i>) provides insights into their evolutionary and demographic histories. American Journal of Physical Anthropology, 2014, 155, 621-634.	2.1	20
34	Genome-wide SNPs clarify lineage diversity confused by coloration in coralsnakes of the Micrurus diastema species complex (Serpentes: Elapidae). Molecular Phylogenetics and Evolution, 2020, 147, 106770.	2.7	20
35	Differential Effect of Selection against LINE Retrotransposons among Vertebrates Inferred from Whole-Genome Data and Demographic Modeling. Genome Biology and Evolution, 2018, 10, 1265-1281.	2.5	19
36	Revisiting the phylogeography, demography and taxonomy of the frog genus Ptychadena in the Ethiopian highlands with the use of genome-wide SNP data. PLoS ONE, 2018, 13, e0190440.	2.5	19

#	Article	IF	CITATIONS
37	Diversification in wild populations of the model organism Anolis carolinensis : A genomeâ€wide phylogeographic investigation. Ecology and Evolution, 2016, 6, 8115-8125.	1.9	17
38	Disentangling the determinants of transposable elements dynamics in vertebrate genomes using empirical evidences and simulations. PLoS Genetics, 2020, 16, e1009082.	3.5	15
39	Diversification of African tree frogs (genus <i>Leptopelis</i>) in the highlands of Ethiopia. Molecular Ecology, 2018, 27, 2256-2270.	3.9	14
40	The Mobilome of Reptiles: Evolution, Structure, and Function. Cytogenetic and Genome Research, 2019, 157, 21-33.	1.1	14
41	Falcon genomics in the context of conservation, speciation, and human culture. Ecology and Evolution, 2019, 9, 14523-14537.	1.9	14
42	Contrasted patterns of divergence and gene flow among five fish species in a Mongolian rift lake following glaciation. Biological Journal of the Linnean Society, 2018, 125, 115-125.	1.6	12
43	Chloride intracellular channel proteins respond to heat stress in Caenorhabditis elegans. PLoS ONE, 2017, 12, e0184308.	2.5	12
44	Contrasted patterns of variation and evolutionary convergence at the antiviral OAS1 gene in old world primates. Immunogenetics, 2015, 67, 487-499.	2.4	11
45	On the Base Composition of Transposable Elements. International Journal of Molecular Sciences, 2022, 23, 4755.	4.1	11
46	Diversification in a biodiversity hotspot: genomic variation in the river frog Amietia nutti across the Ethiopian Highlands. Biological Journal of the Linnean Society, 2017, 122, 801-813.	1.6	10
47	Contrasted patterns of evolution of the LINE-1 retrotransposon in perissodactyls: the history of a LINE-1 extinction. Mobile DNA, 2018, 9, 12.	3.6	10
48	Hybrid Origin and Clonal Diversity in the Parthenogenetic Gecko, Lepidodactylus lugubris in French Polynesia. Journal of Herpetology, 1997, 31, 295.	0.5	9
49	Taxonomic revision of grass frogs (Ptychadenidae, Ptychadena) endemic to the Ethiopian highlands. ZooKeys, 2021, 1016, 77-141.	1.1	8
50	Allozyme Evidence for Specific Status of the Two French Polynesian Skink Species in the Genus Emoia (Reptilia: Lacertilia). Copeia, 1994, 1994, 1042.	1.3	7
51	Functional evolution of the OAS1 viral sensor: Insights from old world primates. Infection, Genetics and Evolution, 2016, 44, 341-350.	2.3	7
52	Selection at behavioural, developmental and metabolic genes is associated with the northward expansion of a successful tropical colonizer. Molecular Ecology, 2019, 28, 3523-3543.	3.9	7
53	Contrasting Rates of LINE-1 Amplification among New World Primates of the Atelidae Family. Cytogenetic and Genome Research, 2018, 154, 217-228.	1.1	5

A new species of puddle frog from an unexplored mountain in southwestern Ethiopia (Anura,) Tj ETQq $0\ 0\ 0$ rgBT /Oyerlock $10\ Tf\ 50\ 62\ Tc$

#	Article	IF	CITATIONS
55	Mitogenomics of historical type specimens clarifies the taxonomy of Ethiopian Boulenger, 1917 (Anura,) Tj ETQq1	1.0.7843	14 rgBT /O
56	Variation in base composition underlies functional and evolutionary divergence in non-LTR retrotransposons. Mobile DNA, 2020, 11 , 14 .	3.6	4
57	Efficient and exact maximum likelihood quantisation of genomic features using dynamic programming. International Journal of Data Mining and Bioinformatics, 2010, 4, 123.	0.1	3
58	Varied diversification patterns and distinct demographic trajectories in Ethiopian montane forest bird (Aves: Passeriformes) populations separated by the Great Rift Valley. Molecular Ecology, 2022, 31, 2664-2678.	3.9	3
59	Linked-Read Sequencing of Eight Falcons Reveals a Unique Genomic Architecture in Flux. Genome Biology and Evolution, 2022, 14, .	2.5	3
60	Biodiversity genomics of North American Dryobates woodpeckers reveals little gene flow across the D. nuttallii x D. scalaris contact zone. Auk, 2019, 136, .	1.4	2
61	Habitat determines convergent evolution of cephalic horns in vipers. Biological Journal of the Linnean Society, 2022, 135, 652-664.	1.6	2
62	The 2019 FASEB Science Research Conference on The Mobile DNA Conference: 25 Years of Discussion and Research, June 23–28, Palm Springs, California, USA. FASEB Journal, 2019, 33, 11625-11628.	0.5	1
63	Title is missing!. , 2020, 16, e1009082.		O
64	Title is missing!. , 2020, 16, e1009082.		0
65	Title is missing!. , 2020, 16, e1009082.		O
66	Title is missing!. , 2020, 16, e1009082.		0