Derek Walsh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585755/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Cytomegalovirus Exploits TACC3 To Control Microtubule Dynamics and Late Stages of Infection. Journal of Virology, 2021, 95, e0082121.	3.4	6
2	Negative charge in the RACK1 loop broadens the translational capacity of the human ribosome. Cell Reports, 2021, 36, 109663.	6.4	9
3	Herpesviruses assimilate kinesin to produce motorized viral particles. Nature, 2021, 599, 662-666.	27.8	26
4	TACC3 Regulates Microtubule Plus-End Dynamics and Cargo Transport in Interphase Cells. Cell Reports, 2020, 30, 269-283.e6.	6.4	10
5	Cytoplasmic control of intranuclear polarity by human cytomegalovirus. Nature, 2020, 587, 109-114.	27.8	29
6	Proteomic and mechanistic dissection of the poxvirus-customized ribosome. Journal of Cell Science, 2020, 134, .	2.0	7
7	Exploitation of Cytoskeletal Networks during Early Viral Infection. Trends in Microbiology, 2019, 27, 39-50.	7.7	64
8	mTOR Dysregulation by Vaccinia Virus F17 Controls Multiple Processes with Varying Roles in Infection. Journal of Virology, 2019, 93, .	3.4	35
9	RACK1 evolved species-specific multifunctionality in translational control through sequence plasticity in a loop domain. Journal of Cell Science, 2019, 132, .	2.0	10
10	Translational control during poxvirus infection. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1515.	6.4	15
11	The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread. Developmental Cell, 2018, 45, 83-100.e7.	7.0	59
12	ZNF598 Plays Distinct Roles in Interferon-Stimulated Gene Expression and Poxvirus Protein Synthesis. Cell Reports, 2018, 23, 1249-1258.	6.4	33
13	Poxviruses Evade Cytosolic Sensing through Disruption of an mTORC1-mTORC2 Regulatory Circuit. Cell, 2018, 174, 1143-1157.e17.	28.9	70
14	Microtubule Regulation and Function during Virus Infection. Journal of Virology, 2017, 91, .	3.4	90
15	Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase. Nature, 2017, 546, 651-655.	27.8	69
16	HIV-1 counteracts an innate restriction by amyloid precursor protein resulting in neurodegeneration. Nature Communications, 2017, 8, 1522.	12.8	42
17	Poxviruses: Slipping and sliding through transcription and translation. PLoS Pathogens, 2017, 13, e1006634.	4.7	17
18	A Cap-to-Tail Guide to mRNA Translation Strategies in Virus-Infected Cells. Annual Review of Virology, 2016, 3, 283-307.	6.7	113

DEREK WALSH

#	Article	IF	CITATIONS
19	HIV-1 capsids bind and exploit the kinesin-1 adaptor FEZ1 for inward movement to the nucleus. Nature Communications, 2015, 6, 6660.	12.8	102
20	Microtubule plus end–associated CLIP-170 initiates HSV-1 retrograde transport in primary human cells. Journal of Cell Biology, 2015, 211, 323-337.	5.2	39
21	Coupling 40S ribosome recruitment to modification of a cap-binding initiation factor by eIF3 subunit e. Genes and Development, 2014, 28, 835-840.	5.9	40
22	HIV-1 Induces the Formation of Stable Microtubules to Enhance Early Infection. Cell Host and Microbe, 2013, 14, 535-546.	11.0	115
23	Tinkering with Translation: Protein Synthesis in Virus-Infected Cells. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012351-a012351.	5.5	211
24	Plus-end tracking proteins, CLASPs, and a viral Akt mimic regulate herpesvirus-induced stable microtubule formation and virus spread. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18268-18273.	7.1	42
25	Translational control of the activation of transcription factor NF-κB and production of type I interferon by phosphorylation of the translation factor elF4E. Nature Immunology, 2012, 13, 543-550.	14.5	114
26	Recruitment of host translation initiation factor elF4G by the Vaccinia Virus ssDNA-binding protein I3. Virology, 2012, 425, 11-22.	2.4	21
27	Focal Adhesion Proteins Talin-1 and Vinculin Negatively Affect Paxillin Phosphorylation and Limit Retroviral Infection. Journal of Molecular Biology, 2011, 410, 761-777.	4.2	31
28	Viral subversion of the host protein synthesis machinery. Nature Reviews Microbiology, 2011, 9, 860-875.	28.6	403
29	Noncytotoxic Inhibition of Viral Infection through eIF4F-Independent Suppression of Translation by 4EGi-1. Journal of Virology, 2011, 85, 853-864.	3.4	29
30	Manipulation of the host translation initiation complex eIF4F by DNA viruses. Biochemical Society Transactions, 2010, 38, 1511-1516.	3.4	21
31	PI3K Signaling Regulates Rapamycin-Insensitive Translation Initiation Complex Formation in Vaccinia Virus-Infected Cells. Journal of Virology, 2009, 83, 3988-3992.	3.4	27
32	Activation of Host Translational Control Pathways by a Viral Developmental Switch. PLoS Pathogens, 2009, 5, e1000334.	4.7	62
33	Eukaryotic Translation Initiation Factor 4F Architectural Alterations Accompany Translation Initiation Factor Redistribution in Poxvirus-Infected Cells. Molecular and Cellular Biology, 2008, 28, 2648-2658.	2.3	96
34	Assembly of an active translation initiation factor complex by a viral protein. Genes and Development, 2006, 20, 461-472.	5.9	74
35	Regulation of the Translation Initiation Factor eIF4F by Multiple Mechanisms in Human Cytomegalovirus-Infected Cells. Journal of Virology, 2005, 79, 8057-8064.	3.4	108
36	Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes and Development, 2004, 18, 660-672.	5.9	166

#	Article	IF	CITATIONS
37	Increased levels of the translation initiation factor eIF4E in differentiating epithelial lung tumor cell lines. Differentiation, 2003, 71, 126-134.	1.9	18