J Christopher Whitehead

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/658570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2012 Plasma Roadmap. Journal Physics D: Applied Physics, 2012, 45, 253001.	2.8	511
2	Calculation of Relative Permeability from Displacement Experiments. Transactions of the AIME, 1959, 216, 370-372.	0.1	492
3	Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: Understanding the synergistic effect at low temperature. Applied Catalysis B: Environmental, 2012, 125, 439-448.	20.2	485
4	The 2020 plasma catalysis roadmap. Journal Physics D: Applied Physics, 2020, 53, 443001.	2.8	362
5	Dry reforming of methane over a Ni/Al ₂ O ₃ catalyst in a coaxial dielectric barrier discharge reactor. Journal Physics D: Applied Physics, 2011, 44, 274007.	2.8	315
6	Plasma–catalysis: the known knowns, the known unknowns and the unknown unknowns. Journal Physics D: Applied Physics, 2016, 49, 243001.	2.8	311
7	Plasma dry reforming of methane in an atmospheric pressure AC gliding arc discharge: Co-generation of syngas and carbon nanomaterials. International Journal of Hydrogen Energy, 2014, 39, 9658-9669.	7.1	281
8	Plasma catalysis: A solution for environmental problems. Pure and Applied Chemistry, 2010, 82, 1329-1336.	1.9	157
9	The role of ozone in the plasma-catalytic destruction of environmental pollutants. Applied Catalysis B: Environmental, 2009, 90, 157-161.	20.2	137
10	Effects of Reactor Packing Materials on H ₂ Production by CO ₂ Reforming of CH ₄ in a Dielectric Barrier Discharge. Plasma Processes and Polymers, 2012, 9, 90-97.	3.0	133
11	Degradation of an azo dye Orange II using a gas phase dielectric barrier discharge reactor submerged in water. Chemical Engineering Journal, 2008, 142, 56-64.	12.7	125
12	Plasma-assisted methane reduction of a NiO catalyst—Low temperature activation of methane and formation of carbon nanofibres. Applied Catalysis B: Environmental, 2011, 106, 616-620.	20.2	103
13	Novel Method for Enhancing the Destruction of Environmental Pollutants by the Combination of Multiple Plasma Discharges. Environmental Science & Technology, 2008, 42, 4546-4550.	10.0	94
14	Plasma-catalysis destruction of aromatics for environmental clean-up: Effect of temperature and configuration. Applied Catalysis B: Environmental, 2008, 82, 180-189.	20.2	91
15	Gas Purification by Nonthermal Plasma: A Case Study of Ethylene. Environmental Science & Technology, 2013, 47, 6478-6485.	10.0	85
16	Plasma-assisted reduction of a NiO/Al2O3 catalyst in atmospheric pressure H2/Ar dielectric barrier discharge. Catalysis Today, 2013, 211, 120-125.	4.4	80
17	Electrical and spectroscopic diagnostics of a single-stage plasma-catalysis system: effect of packing with TiO ₂ . Journal Physics D: Applied Physics, 2011, 44, 482003.	2.8	78
18	CO 2 conversion in a non-thermal, barium titanate packed bed plasma reactor: The effect of dilution by Ar and N 2. Chemical Engineering Journal, 2017, 327, 764-773.	12.7	77

#	Article	IF	CITATIONS
19	Influence of Temperature on Gas-Phase Toluene Decomposition in Plasma-Catalytic System. Plasma Chemistry and Plasma Processing, 2007, 27, 85-94.	2.4	75
20	Plasma-assisted catalysis for the destruction of CFC-12 in atmospheric pressure gas streams using TiO2. Catalysis Letters, 2007, 113, 29-33.	2.6	75
21	The Chemistry of Dichloromethane Destruction in Atmospheric-Pressure Gas Streams by a Dielectric Packed-Bed Plasma Reactor. Journal of Physical Chemistry A, 2000, 104, 6032-6038.	2.5	68
22	An Investigation into the Dominant Reactions for Ethylene Destruction in Nonâ€Thermal Atmospheric Plasmas. Plasma Processes and Polymers, 2012, 9, 994-1000.	3.0	68
23	CO2 reduction to syngas and carbon nanofibres by plasma-assisted in situ decomposition of water. International Journal of Greenhouse Gas Control, 2013, 16, 361-363.	4.6	63
24	Two-photon VUV laser-induced fluorescence detection of lâ~(2P12) and I(2P12) from alkyl iodide photodissociation at 248 nm. Chemical Physics Letters, 1987, 135, 163-169.	2.6	59
25	Plasma-catalysis: Is it just a question of scale?. Frontiers of Chemical Science and Engineering, 2019, 13, 264-273.	4.4	57
26	Remediation of Dichloromethane (CH ₂ Cl ₂) Using Non-thermal, Atmospheric Pressure Plasma Generated in a Packed-Bed Reactor. Environmental Science & Technology, 2014, 48, 558-565.	10.0	56
27	Plasma-catalytic dry reforming of methane in an atmospheric pressure AC gliding arc discharge. Catalysis Today, 2015, 256, 76-79.	4.4	55
28	Transition Behavior of Packed-Bed Dielectric Barrier Discharge in Argon. IEEE Transactions on Plasma Science, 2011, 39, 2172-2173.	1.3	54
29	Dynamic Behavior of an Atmospheric Argon Gliding Arc Plasma. IEEE Transactions on Plasma Science, 2011, 39, 2900-2901.	1.3	52
30	Reactive scattering of alkali dimers. Alkali atom-dimer exchange reactions. Faraday Discussions of the Chemical Society, 1973, 55, 320.	2.2	50
31	The removal of dichloromethane from atmospheric pressure air streams using plasma-assisted catalysis. Applied Catalysis B: Environmental, 2007, 72, 282-288.	20.2	46
32	QDB: a new database of plasma chemistries and reactions. Plasma Sources Science and Technology, 2017, 26, 055014.	3.1	42
33	Dynamics of heavy + light–heavy atom transfer reactions. The reaction Cl + HCl → ClH + Cl. Faraday Discussions of the Chemical Society, 1987, 84, 387-403.	2.2	41
34	Classical trajectory studies of alkali atom-alkali dimer exchange reactions: Li+Li2. Molecular Physics, 1975, 29, 177-189.	1.7	39
35	Reactive scattering of oxygen atoms: O+I2, ICl, Br2. Molecular Physics, 1975, 29, 1813-1828.	1.7	39
36	Temperature Dependence of Plasmaâ^'Catalysis Using a Nonthermal, Atmospheric Pressure Packed Bed; the Destruction of Benzene and Toluene. Journal of Physical Chemistry C, 2007, 111, 5090-5095.	3.1	39

#	Article	IF	CITATIONS
37	The reaction X+Cl2→XCl+Cl (X=Mu,H,D). I. A new inversion procedure for obtaining energy surfaces from experimental detailed and total rate coefficient data. Journal of Chemical Physics, 1980, 72, 6209-6226.	3.0	37
38	Collisional removal rates for electronically excited CH radicals B2Σ–and C2Σ+. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2323-2327.	1.7	36
39	Rotational and vibrational energy transfer in CH(A2Δ). Journal of the Chemical Society, Faraday Transactions, 1993, 89, 1287-1290.	1.7	36
40	Semi-empirical potential energy surfaces for alkali atom-dimer exchange reactions. Molecular Physics, 1973, 26, 267-280.	1.7	35
41	Bimodal distribution of Bal vibrational states from the reaction Ba+CF3I. Journal of Chemical Physics, 1977, 67, 4912-4916.	3.0	35
42	The removal of dichloromethane from atmospheric pressure nitrogen gas streams using plasma-assisted catalysis. Applied Catalysis B: Environmental, 2007, 74, 111-116.	20.2	35
43	On the information theoretic synthesis of three dimensional vibrotational reaction probabilities from collinear results. Chemical Physics, 1979, 39, 395-406.	1.9	33
44	Laser-induced fluorescence determination of the internal state distributions of OH(X2Î) produced in molecular beam reactions ofO(3P) with some cyclic hydrocarbons. Molecular Physics, 1984, 52, 475-483.	1.7	33
45	Integration of simulation into pre-laboratory chemical course: Computer cluster versus WebCT. Computers and Education, 2009, 52, 45-52.	8.3	33
46	CO ₂ dissociation in a packed-bed plasma reactor: effects of operating conditions. Plasma Sources Science and Technology, 2018, 27, 075009.	3.1	33
47	A Mechanism for the Destruction of CFC-12 in a Nonthermal, Atmospheric Pressure Plasma. Journal of Physical Chemistry A, 2004, 108, 8341-8345.	2.5	32
48	Chemi-ionization reactions of Ca, Sr, Ba, and Yb atoms with the halogen and interhalogen molecules. Chemical Physics, 1977, 20, 265-269.	1.9	31
49	Reactive scattering of a supersonic alkali atom beam: K + Br2, BrCN, SnCl4, PCl3, CCl4, CH3I. Molecular Physics, 1972, 23, 787-805.	1.7	30
50	Bond energy of the IO radical from molecular beam reactive scattering measurements. Nature, 1975, 253, 37-37.	27.8	30
51	Uni- and bimodal product energy distributions for the reactions H + Cl2 (ï = 1) and D + Cl2 (ï = 1). Chemical Physics Letters, 1979, 62, 479-482.	2.6	30
52	Hydrolysis of SO3 and ClONO2 in water clusters A combined experimental and theoretical study. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 2775-2779.	1.7	30
53	Modelling of non-thermal plasma aftertreatment of exhaust gas streams. Journal Physics D: Applied Physics, 2004, 37, 42-49.	2.8	30
54	Molecular beam studies of free-radical processes: photodissociation, inelastic and reactive collisions. Reports on Progress in Physics, 1996, 59, 993-1040.	20.1	29

#	Article	IF	CITATIONS
55	NOx Formation in the Plasma Treatment of Halomethanes. Journal of Physical Chemistry A, 2005, 109, 11255-11260.	2.5	29
56	Reactive scattering of alkali dimers: chemi-ionization. Molecular Physics, 1974, 27, 741-751.	1.7	28
57	Infrared multiphoton dissociation of SF6 in a molecular beam: Observation of F atoms by chemiâ€ionization detection. Journal of Chemical Physics, 1977, 67, 5407-5409.	3.0	28
58	The Chemistry of Cold Plasma. , 2016, , 53-81.		28
59	Quasiclassical dynamics of light+heavy–heavy and heavy+heavy–light atom reactions: The reaction X+F2→XF+F(X = Mu, H). Journal of Chemical Physics, 1981, 75, 3301-3309.	3.0	27
60	The Chemistry of Methane Remediation by a Non?thermal Atmospheric Pressure Plasma. Plasma Chemistry and Plasma Processing, 2004, 24, 421-434.	2.4	27
61	Industrial Scale Destruction of Environmental Pollutants using a Novel Plasma Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 5856-5860.	3.7	27
62	The Reaction X + Cl2→XCl + Cl (X = Mu, H, D). II. Comparison of experimental data with theoretical results derived from a new potential energy surface. Chemical Physics, 1982, 65, 29-48.	1.9	26
63	Decomposition of Hydrofluorocarbons in a Dielectric-Packed Plasma Reactor. Journal of Physical Chemistry A, 2008, 112, 6586-6591.	2.5	26
64	The Effect of Temperature on the Plasma-Catalytic Destruction of Propane and Propene: A Comparison with Thermal Catalysis. Plasma Chemistry and Plasma Processing, 2009, 29, 411-419.	2.4	26
65	Classical trajectory studies of alkali atom-alkali dimer exchange reactions : Na+Li2and Li+Na2. Molecular Physics, 1976, 31, 549-569.	1.7	24
66	Reactive scattering of alkali dimers: Product K atoms from K2+Br2, IBr, BrCN, SnCl4. Molecular Physics, 1973, 25, 515-528.	1.7	23
67	Dynamics of hydrogen atom abstraction in the reaction atomic oxygen(3P) + ethanol. The Journal of Physical Chemistry, 1985, 89, 569-570.	2.9	23
68	The production of electronically-excited species from the photolysis of N2H4and N2D4at 193 nm. Molecular Physics, 1987, 62, 1297-1306.	1.7	22
69	Adsorption of Organic Molecules on Large Water Clusters. Journal of Physical Chemistry A, 1997, 101, 1250-1253.	2.5	22
70	Orientation dependence of the F + H2 reaction. Analysis of the angle-dependent line-of-centres model. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 1703.	1.1	21
71	Rotational and Vibrational Energy Transfer in CH (B 2.SIGMA). The Journal of Physical Chemistry, 1994, 98, 8274-8278.	2.9	20
72	The Destruction of Atmospheric Pressure Propane and Propene Using a Surface Discharge Plasma Reactor. Journal of Physical Chemistry A, 2008, 112, 3953-3958.	2.5	20

#	Article	IF	CITATIONS
73	Vacuum ultraviolet excitation of large water clusters. The Journal of Physical Chemistry, 1994, 98, 12530-12534.	2.9	19
74	Formation of H2SO4 from SO3 and H2O, catalysed in water clusters. Chemical Communications, 1997, , 707-708.	4.1	19
75	The Effect of Temperature on the Removal of DCM using Non-Thermal, Atmospheric-Pressure Plasma-Assisted Catalysis. Plasma Processes and Polymers, 2007, 4, 463-470.	3.0	19
76	Microscope–ICCD Imaging of an Atmospheric Pressure \$hbox{CH}_{4}\$ and \$hbox{CO}_{2}\$ Dielectric Barrier Discharge. IEEE Transactions on Plasma Science, 2011, 39, 2176-2177.	1.3	19
77	Conjugate Adaptation of Saccadic Gain in Non-Human Primates With Strabismus. Journal of Neurophysiology, 2004, 91, 1078-1084.	1.8	18
78	Reactive scattering of alkali dimers : Determination of two product distributions for K2 + Br2, BrCN. Chemical Physics Letters, 1972, 13, 319-321.	2.6	17
79	The adsorption of methanol on large water clusters. Chemical Physics Letters, 1995, 240, 216-223.	2.6	16
80	On differences between quasi-classical and quantu,-mechanical vibrational product distributions in the collinear H+Cl2 (v=2) and D+Cl2 (v=2) reactions. Societa Italiana Di Fisica Nuovo Cimento B-General Physics, Relativity Astronomy and Mathematical Physics and Methods, 1981, 63, 116-124.	0.2	15
81	Classical trajectory studies of the reaction F + I2. Part 2.—Reaction energy dependence and the role of migration. Journal of the Chemical Society, Faraday Transactions 2, 1984, 80, 985-990.	1.1	15
82	The dynamics of hydroxyl production in the reaction atomic oxygen(3P) + benzene. The Journal of Physical Chemistry, 1986, 90, 4911-4912.	2.9	15
83	Plasma-assisted synthesis of N2O5from NO2in air at atmospheric pressure using a dielectric pellet bed reactor. Journal Physics D: Applied Physics, 1999, 32, 1136-1141.	2.8	15
84	Adaptive Control for NO _{<i>x</i>} Removal in Nonâ€Thermal Plasma Processing. Plasma Processes and Polymers, 2007, 4, 556-562.	3.0	15
85	The Chemistry of Gaseous Dodecane Degradation in a BaTiO3 Packed-Bed Plasma Reactor. Plasma Chemistry and Plasma Processing, 2015, 35, 159-172.	2.4	15
86	Reactive scattering of methyl radicals: velocity analysis of CH3+ I2, ICl. Molecular Physics, 1976, 31, 1069-1083.	1.7	14
87	Laser-induced fluorescence studies of a supersonic molecular beam of bromine : Vibrational and rotational relaxation of bromine and collision-free lifetimes for Br2(B3Î(Ou+)). Molecular Physics, 1981, 44, 97-109.	1.7	14
88	Chemical vapour deposition of graphene on copper–nickel alloys: the simulation of a thermodynamic and kinetic approach. Nanoscale, 2020, 12, 15283-15294.	5.6	13
89	The four-centre reaction I * 2 + F2 studied by laser-induced chemiluminescence in molecular beams. Faraday Discussions of the Chemical Society, 1977, 62, 222.	2.2	12
90	Chapter 5 The Distribution of Energy in the Products of Simple Reactions. Comprehensive Chemical Kinetics, 1983, 24, 357-506.	2.3	12

#	Article	IF	CITATIONS
91	Quasiclassical trajectory study of the F + I2 potential-energy surface. Journal of the Chemical Society, Faraday Transactions 2, 1989, 85, 1081.	1.1	12
92	The 193 nm photolysis of phosphorus trichloride and phosphorus tribromide. Chemical Physics Letters, 1992, 196, 547-551.	2.6	12
93	Adsorption of NxOy-Based Molecules on Large Water Clusters:Â An Experimental and Theoretical Study. Journal of Physical Chemistry A, 1997, 101, 1254-1259.	2.5	12
94	Plasma Processing of Propane at Hyperâ€Atmospheric Pressure: Experiment and Modelling. Plasma Processes and Polymers, 2007, 4, 710-718.	3.0	12
95	Classical trajectory studies of the reaction F + I2. Journal of the Chemical Society, Faraday Transactions 2, 1982, 78, 1165.	1.1	11
96	Generation of supersonic beams of free radicals by chemical reaction. The Journal of Physical Chemistry, 1983, 87, 1663-1665.	2.9	10
97	Chemiluminescent reactions of fluorine atoms with organic iodides in the gas phase. Part 1.—lodomethanes. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 627-637.	1.1	10
98	The fluorescence excitation spectrum of deuterated ammonia in the region 105–200 nm: the states of ND3. Molecular Physics, 1994, 83, 1265-1271.	1.7	10
99	Enhancement of the Destruction of Propane in a Low-Temperature Plasma by the Addition of Unsaturated Hydrocarbons: Experiment and Modeling. Journal of Physical Chemistry A, 2008, 112, 7862-7867.	2.5	10
100	Thermal features of low current discharges and energy transfer to insulation surfaces. IEEE Transactions on Dielectrics and Electrical Insulation, 2014, 21, 2466-2475.	2.9	9
101	Investigation of hydrocarbon oil transformation by gliding arc discharge: comparison of batch and recirculated configurations. Journal Physics D: Applied Physics, 2016, 49, 154001.	2.8	9
102	Visible chemiluminescence from the high-pressure reactions of F atoms with CH3I and CH2I2. Journal of the Chemical Society, Faraday Transactions 2, 1983, 79, 1113.	1.1	8
103	Laser studies of reactive collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1990, 23, 3443-3455.	1.5	8
104	The VUV spectroscopy of deuterated hydrazine, N2D4. Chemical Physics Letters, 1992, 188, 399-404.	2.6	8
105	A theoretical and experimental study of the HPCl radical: the →″ visible emission spectrum. Chemical Physics Letters, 2000, 331, 483-488.	2.6	8
106	Chemiluminescent reactions of fluorine atoms with inorganic iodides in the gas phase. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 767.	1.1	7
107	The 248 nm photolysis of phosphorus trichloride and phosphorus tribromide. Chemical Physics, 1994, 183, 127-134.	1.9	7
108	Time-dependent chemiluminescence from the surface-catalysed recombination of O and NO on polycrystalline Ni. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2877.	1.7	6

#	Article	IF	CITATIONS
109	On the role of iodine atoms in the production of if(B3Î) in fluorine atom/iodide flames. Chemical Physics Letters, 1987, 135, 170-176.	2.6	5
110	The production of OH(2Î) in the reaction O(3P)+GeH4. Chemical Physics Letters, 1991, 177, 207-212.	2.6	5
111	Classical trajectory studies of the reaction F + CH3l ? IF + CH3. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 2329.	1.1	4
112	Laser-induced fluorescence studies of vibrational and rotational relaxation in a supersonic molecular beam of bromine monochloride. Molecular Physics, 1983, 48, 1067-1073.	1.7	4
113	Classical trajectory studies of the reagent rotational energy dependence for the reactions X + ICH3→ XI + CH3(X = Na and F). Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 1765-1773.	1.1	4
114	Time-dependent chemiluminescence from the surface-catalysed recombination of O and NO on polycrystalline Cu, Au and Ag. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1377.	1.7	4
115	Adsorption of Some Atmospherically Important Molecules onto Large Water Clusters: SO ₂ , SO ₃ , HCl, and ClONO ₂ . Israel Journal of Chemistry, 1997, 37, 419-425.	2.3	4
116	Plasma Catalysis for Volatile Organic Compounds Abatement. , 2014, , 155-172.		4
117	Chemiluminescent reactions of fluorine atoms with organic iodides in the gas phase. Part 2.—Aliphatic and aromatic iodides. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 639-646.	1.1	3
118	The production of long-lived IF(B3Î) emission in the 248 nm photolysis of a mixture of CF3I and F2. Chemical Physics Letters, 1987, 139, 442-447.	2.6	3
119	Faraday communications. A crossed molecular beam chemiluminescence study of the reactions F and Cl +(NO)2. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1619.	1.7	3
120	Plasma Catalysis: Challenges and Future Perspectives. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 343-348.	0.2	3
121	Product Translational Energy Distributions of Methyl Radical Reactions. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1977, 81, 142-144.	0.9	2
122	Laser-induced fluorescence studies of rotational relaxation of SO2in a supersonic molecular beam. Molecular Physics, 1983, 50, 347-351.	1.7	2
123	Chemistry: Far from simple kinetics. Nature, 1984, 308, 112-112.	27.8	2
124	The 248 nm KrF laser excitation of alkyl iodide–fluorine mixtures. The production and spectroscopy of CF2(Ã). Journal of the Chemical Society, Faraday Transactions 2, 1988, 84, 483-490.	1.1	2
125	Time-dependent chemiluminescence from the surface-catalysed recombination of O and NO on polycrystalline platinum. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 399.	1.7	2
126	The Oxidation of Carbon Soot in a Non-thermal, Atmospheric Pressure Plasma: Experiment and Modelling. Journal of Advanced Oxidation Technologies, 2005, 8, .	0.5	2

#	Article	IF	CITATIONS
127	The Production of IF(B3Î) in the 248 nm Laser Photolysis of Fluorine/Alkyl Iodide Mixtures. Laser Chemistry, 1988, 9, 369-384.	0.5	1
128	Classical trajectory studies versus statistical model predictions of the reagent rotational energy dependence for the reaction Cl+ICH3→ClI+CH3. Chemical Physics, 1990, 146, 139-146.	1.9	1
129	Fluorescence excitation spectroscopy of some haloethenes, CF2 = CXY (XY â‰; FCl, Cl2, FH), excited in the vacuum ultraviolet (70–180 nm). Chemical Physics, 1997, 219, 333-340.	1.9	1
130	Chapter 8. Photofragment fluorescence following vacuum ultraviolet excitation using synchroton radiation. Annual Reports on the Progress of Chemistry Section C, 1998, 94, 293.	4.4	1
131	Comparison of the temperature of low-current AC/DC discharge. , 2013, , .		1
132	THE PLASMA DESTRUKTION OF ODOROUS MOLECULES: ORGANOSULPHUR COMPOUNDS. High Temperature Material Processes, 2003, 7, 487-499.	0.6	1
133	Plasma Catalysis: Introduction and History. Springer Series on Atomic, Optical, and Plasma Physics, 2019, , 1-19.	0.2	1
134	Fluorine + trifluoroiodomethane dark reaction. 1. Stoichiometry and pressure-dependent kinetics. The Journal of Physical Chemistry, 1992, 96, 2543-2548.	2.9	0
135	Dark reactions between F 2 and perfluoroalkyl iodides. , 1993, , .		0
136	Chemiluminescence from the reactions of atomic and molecular fluorine with phosphorous trichloride and tribromide. Physical Chemistry Chemical Physics, 2000, 2, 737-740.	2.8	0
137	Plasma-catalytic dry reforming of the CH4 in dielectric barrier discharge: Synergistic effect at low temperatures. , 2012, , .		0
138	The Characterisation of the Mechanism of IF(B) Production in Fluorine/ Iodide Systems. , 1988, , 515-523.		0