
Hans-Georg Kräusslich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Medicine, 2005, 11, 791-796.	30.7	2,561
2	Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 2020, 588, 498-502.	27.8	918
3	The Protein Network of HIV Budding. Cell, 2003, 114, 701-713.	28.9	771
4	The HIV lipidome: A raft with an unusual composition. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2641-2646.	7.1	621
5	Viral Proteinases. Annual Review of Biochemistry, 1988, 57, 701-754.	11.1	613
6	HIV-1 Assembly, Budding, and Maturation. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006924-a006924.	6.2	605
7	A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Science Translational Medicine, 2020, 12, .	12.4	516
8	The stoichiometry of Gag protein in HIV-1. Nature Structural and Molecular Biology, 2004, 11, 672-675.	8.2	462
9	Role of the Clathrin Terminal Domain in Regulating Coated Pit Dynamics Revealed by Small Molecule Inhibition. Cell, 2011, 146, 471-484.	28.9	459
10	Structural organization of authentic, mature HIV-1 virions and cores. EMBO Journal, 2003, 22, 1707-1715.	7.8	390
11	An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science, 2016, 353, 506-508.	12.6	375
12	From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15394-15399.	7.1	279
13	Structure of the immature HIV-1 capsid in intact virus particles at 8.8ÂÃ resolution. Nature, 2015, 517, 505-508.	27.8	277
14	Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Current Biology, 1997, 7, 729-738.	3.9	270
15	Maturation-Dependent HIV-1 Surface Protein Redistribution Revealed by Fluorescence Nanoscopy. Science, 2012, 338, 524-528.	12.6	245
16	HIV-1 Antagonism of CD317 Is Species Specific and Involves Vpu-Mediated Proteasomal Degradation of the Restriction Factor. Cell Host and Microbe, 2009, 5, 285-297.	11.0	240
17	Role of Lipids in Virus Replication. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004820-a004820.	5.5	235
18	The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science, 2016, 354–1434-1437	12.6	229

HANS-GEORG KRÃ**¤**SSLICH

#	Article	IF	CITATIONS
19	HIV-1 Buds Predominantly at the Plasma Membrane of Primary Human Macrophages. PLoS Pathogens, 2007, 3, e36.	4.7	228
20	A peptide inhibitor of HIV-1 assembly in vitro. Nature Structural and Molecular Biology, 2005, 12, 671-677.	8.2	209
21	Three-Dimensional Analysis of Budding Sites and Released Virus Suggests a Revised Model for HIV-1 Morphogenesis. Cell Host and Microbe, 2008, 4, 592-599.	11.0	208
22	Siglec-1 Is a Novel Dendritic Cell Receptor That Mediates HIV-1 Trans-Infection Through Recognition of Viral Membrane Gangliosides. PLoS Biology, 2012, 10, e1001448.	5.6	208
23	Involvement of Clathrin-Mediated Endocytosis in Human Immunodeficiency Virus Type 1 Entry. Journal of Virology, 2005, 79, 1581-1594.	3.4	202
24	Construction and Characterization of a Fluorescently Labeled Infectious Human Immunodeficiency Virus Type 1 Derivative. Journal of Virology, 2004, 78, 10803-10813.	3.4	201
25	In Vitro Assembly Properties of Purified Bacterially Expressed Capsid Proteins of Human Immunodeficiency Virus. FEBS Journal, 1997, 249, 592-600.	0.2	195
26	Context Dependence of Different Modules for Posttranscriptional Enhancement of Gene Expression from Retroviral Vectors. Molecular Therapy, 2000, 2, 435-445.	8.2	188
27	The Mechanism of HIV-1 Core Assembly: Insights from Three-Dimensional Reconstructions of Authentic Virions. Structure, 2006, 14, 15-20.	3.3	188
28	Cone-shaped HIV-1 capsids are transported through intact nuclear pores. Cell, 2021, 184, 1032-1046.e18.	28.9	179
29	Dynamics of HIV-1 Assembly and Release. PLoS Pathogens, 2009, 5, e1000652.	4.7	178
30	Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component. Nature Cell Biology, 2011, 13, 469-474.	10.3	173
31	The HIV-1 capsid protein C-terminal domain in complex with a virus assembly inhibitor. Nature Structural and Molecular Biology, 2005, 12, 678-682.	8.2	167
32	More than one door - Budding of enveloped viruses through cellular membranes. FEBS Letters, 2007, 581, 2089-2097.	2.8	164
33	The Molecular Architecture of HIV. Journal of Molecular Biology, 2011, 410, 491-500.	4.2	164
34	Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cellular Microbiology, 2013, 15, 292-304.	2.1	157
35	A Novel Substrate-Based HIV-1 Protease Inhibitor Drug Resistance Mechanism. PLoS Medicine, 2007, 4, e36.	8.4	146
36	Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. ELife, 2014, 3, e04114.	6.0	146

HANS-GEORG KRäSSLICH

#	Article	IF	CITATIONS
37	NEDD4L Overexpression Rescues the Release and Infectivity of Human Immunodeficiency Virus Type 1 Constructs Lacking PTAP and YPXL Late Domains. Journal of Virology, 2008, 82, 4884-4897.	3.4	144
38	HIV-1 nuclear import in macrophages is regulated by CPSF6-capsid interactions at the nuclear pore complex. ELife, 2019, 8, .	6.0	142
39	The Human Endosomal Sorting Complex Required for Transport (ESCRT-I) and Its Role in HIV-1 Budding. Journal of Biological Chemistry, 2004, 279, 36059-36071.	3.4	134
40	Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. Journal of Medicinal Chemistry, 2009, 52, 7132-7141.	6.4	132
41	Seroprevalence of six different viruses among pregnant women and blood donors in rural and urban Burkina Faso: A comparative analysis. Journal of Medical Virology, 2006, 78, 683-692.	5.0	131
42	Super-Resolution Microscopy Reveals Specific Recruitment of HIV-1 Envelope Proteins to Viral Assembly Sites Dependent on the Envelope C-Terminal Tail. PLoS Pathogens, 2013, 9, e1003198.	4.7	131
43	Gag Mutations Strongly Contribute to HIV-1 Resistance to Protease Inhibitors in Highly Drug-Experienced Patients besides Compensating for Fitness Loss. PLoS Pathogens, 2009, 5, e1000345.	4.7	124
44	Prevalence of SARS-CoV-2 Infection in Children and Their Parents in Southwest Germany. JAMA Pediatrics, 2021, 175, 586.	6.2	124
45	Double-labelled HIV-1 particles for study of virus–cell interaction. Virology, 2007, 360, 92-104.	2.4	121
46	Cryo Electron Tomography of Native HIV-1 Budding Sites. PLoS Pathogens, 2010, 6, e1001173.	4.7	119
47	The Mason-Pfizer Monkey Virus PPPY and PSAP Motifs Both Contribute to Virus Release. Journal of Virology, 2003, 77, 9474-9485.	3.4	114
48	Retroviral proteases and their roles in virion maturation. Virology, 2015, 479-480, 403-417.	2.4	109
49	Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nature Communications, 2018, 9, 1109.	12.8	109
50	HIV-1 Capture and Transmission by Dendritic Cells: The Role of Viral Glycolipids and the Cellular Receptor Siglec-1. PLoS Pathogens, 2014, 10, e1004146.	4.7	108
51	Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nature Methods, 2015, 12, 827-830.	19.0	104
52	Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8233-8238.	7.1	98
53	HIV-1 Gag Processing Intermediates Trans-dominantly Interfere with HIV-1 Infectivity. Journal of Biological Chemistry, 2009, 284, 29692-29703.	3.4	97
54	Structural Analysis of HIV-1 Maturation Using Cryo-Electron Tomography. PLoS Pathogens, 2010, 6, e1001215.	4.7	96

#	Article	IF	CITATIONS
55	CD317/Tetherin Is Enriched in the HIV-1 Envelope and Downregulated from the Plasma Membrane upon Virus Infection. Journal of Virology, 2010, 84, 4646-4658.	3.4	94
56	Structure and architecture of immature and mature murine leukemia virus capsids. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11751-E11760.	7.1	92
57	Live-cell observation of cytosolic HIV-1 assembly onset reveals RNA-interacting Gag oligomers. Journal of Cell Biology, 2015, 210, 629-646.	5.2	86
58	HIV-1 immune activation induces Siglec-1 expression and enhances viral trans-infection in blood and tissue myeloid cells. Retrovirology, 2015, 12, 37.	2.0	85
59	SARS-CoV-2 RNA Extraction Using Magnetic Beads for Rapid Large-Scale Testing by RT-qPCR and RT-LAMP. Viruses, 2020, 12, 863.	3.3	79
60	Probing HIV-1 Membrane Liquid Order by Laurdan Staining Reveals Producer Cell-dependent Differences. Journal of Biological Chemistry, 2009, 284, 22238-22247.	3.4	78
61	Sialyllactose in Viral Membrane Gangliosides Is a Novel Molecular Recognition Pattern for Mature Dendritic Cell Capture of HIV-1. PLoS Biology, 2012, 10, e1001315.	5.6	78
62	Structural Analysis of the Roles of Influenza A Virus Membrane-Associated Proteins in Assembly and Morphology. Journal of Virology, 2015, 89, 8957-8966.	3.4	78
63	Interactions of human retroviruses with the host cell cytoskeleton. Current Opinion in Microbiology, 2006, 9, 409-415.	5.1	77
64	The host-cell restriction factor SERINC5 restricts HIV-1 infectivity without altering the lipid composition and organization of viral particles. Journal of Biological Chemistry, 2017, 292, 13702-13713.	3.4	76
65	Residues in the HIV-1 Capsid Assembly Inhibitor Binding Site Are Essential for Maintaining the Assembly-competent Quaternary Structure of the Capsid Protein. Journal of Biological Chemistry, 2008, 283, 32024-32033.	3.4	74
66	Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3442-3446.	7.1	72
67	Multiple copies of the Mason-Pfizer monkey virus constitutive RNA transport element lead to enhanced HIV-1 Gag expression in a context-dependent manner. Nucleic Acids Research, 2000, 28, 901-910.	14.5	71
68	HIV-1 uncoating by release of viral cDNA from capsid-like structures in the nucleus of infected cells. ELife, 2021, 10, .	6.0	71
69	High-resolution structures of HIV-1 Gag cleavage mutants determine structural switch for virus maturation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9401-E9410.	7.1	65
70	Humoral and cellular responses after COVID-19 vaccination in anti-CD20-treated lymphoma patients. Blood, 2022, 139, 142-147.	1.4	63
71	Ultrastructural Analysis of ESCRT Proteins Suggests a Role for Endosome-Associated Tubular-Vesicular Membranes in ESCRT Function. Traffic, 2006, 7, 1551-1566.	2.7	61
72	Maturation of the matrix and viral membrane of HIV-1. Science, 2021, 373, 700-704.	12.6	60

HANS-GEORG KRÃ**¤**SSLICH

#	Article	IF	CITATIONS
73	A possible regulation of negative factor (Nef) activity of human immunodeficiency virus type 1 by the viral protease. FEBS Journal, 1994, 223, 589-593.	0.2	58
74	Analysis of Human Immunodeficiency Virus Type 1 Gag Ubiquitination. Journal of Virology, 2005, 79, 9134-9144.	3.4	58
75	HIV-1 Entry in SupT1-R5, CEM-ss, and Primary CD4 ⁺ T Cells Occurs at the Plasma Membrane and Does Not Require Endocytosis. Journal of Virology, 2014, 88, 13956-13970.	3.4	58
76	Chemogenetic Control of Nanobodies. Nature Methods, 2020, 17, 279-282.	19.0	58
77	Polyprotein processing in picornavirus replication. Biochimie, 1988, 70, 119-130.	2.6	57
78	Single-molecule coordinate-based analysis of the morphology of HIV-1 assembly sites with near-molecular spatial resolution. Histochemistry and Cell Biology, 2013, 139, 173-179.	1.7	57
79	A Versatile Tool for Live-Cell Imaging and Super-Resolution Nanoscopy Studies of HIV-1 Env Distribution and Mobility. Cell Chemical Biology, 2017, 24, 635-645.e5.	5.2	55
80	Expression inEscherichiacoli and Purification of Human Immunodeficiency Virus Type 1 Capsid Protein (p24). AIDS Research and Human Retroviruses, 1990, 6, 1169-1175.	1.1	54
81	Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines. Nucleic Acids Research, 2013, 41, e199-e199.	14.5	53
82	The native structure of the assembled matrix protein 1 of influenza A virus. Nature, 2020, 587, 495-498.	27.8	53
83	Conserved and Variable Features of Gag Structure and Arrangement in Immature Retrovirus Particles. Journal of Virology, 2010, 84, 11729-11736.	3.4	52
84	The Late-Domain-Containing Protein p6 Is the Predominant Phosphoprotein of Human Immunodeficiency Virus Type 1 Particles. Journal of Virology, 2002, 76, 1015-1024.	3.4	50
85	Aptamer Displacement Identifies Alternative Small-Molecule Target Sites that Escape Viral Resistance. Chemistry and Biology, 2007, 14, 804-812.	6.0	49
86	Gag-Pol Processing during HIV-1 Virion Maturation: A Systems Biology Approach. PLoS Computational Biology, 2013, 9, e1003103.	3.2	49
87	Architecture and Regulation of the HIV-1 Assembly and Holding Compartment in Macrophages. Journal of Virology, 2011, 85, 7922-7927.	3.4	47
88	Molecular Characterization of a Respiratory Syncytial Virus Outbreak in a Hematology Unit in Heidelberg, Germany. Journal of Clinical Microbiology, 2013, 51, 155-162.	3.9	46
89	Proteome analysis of the HIV-1 Gag interactome. Virology, 2014, 460-461, 194-206.	2.4	46
90	Pre-arrayed Pan-AAV Peptide Display Libraries for Rapid Single-Round Screening. Molecular Therapy, 2020, 28, 1016-1032.	8.2	46

#	Article	IF	CITATIONS
91	Cumulative Mutations of Ubiquitin Acceptor Sites in Human Immunodeficiency Virus Type 1 Gag Cause a Late Budding Defect. Journal of Virology, 2006, 80, 6267-6275.	3.4	45
92	Quantification of phosphoinositides reveals strong enrichment of PIP2 in HIV-1 compared to producer cell membranes. Scientific Reports, 2019, 9, 17661.	3.3	45
93	Synchronized HIV assembly by tunable PIP2 changes reveals PIP2 requirement for stable Gag anchoring. ELife, 2017, 6, .	6.0	45
94	Genotypic and Phenotypic Analysis of HIV Type 1 Primary Isolates from Western Cameroon. AIDS Research and Human Retroviruses, 2002, 18, 39-48.	1.1	44
95	The Abbott PanBio WHO emergency use listed, rapid, antigen-detecting point-of-care diagnostic test for SARS-CoV-2—Evaluation of the accuracy and ease-of-use. PLoS ONE, 2021, 16, e0247918.	2.5	44
96	Direct and Dynamic Detection of HIV-1 in Living Cells. PLoS ONE, 2012, 7, e50026.	2.5	42
97	Proteolytic Processing of Particle-Associated Retroviral Polyproteins by Homologous and Heterologous Viral Proteinases. FEBS Journal, 1995, 228, 191-198.	0.2	42
98	Mutations in HIV-1 <i>gag</i> and <i>pol</i> Compensate for the Loss of Viral Fitness Caused by a Highly Mutated Protease. Antimicrobial Agents and Chemotherapy, 2012, 56, 4320-4330.	3.2	40
99	Systematic mutational analysis of the activeâ€site threonine of HIVâ€1 proteinase: Rethinking the "fireman's grip―hypothesis. Protein Science, 2000, 9, 1631-1641.	7.6	39
100	From experimental setup to bioinformatics: An RNAi screening platform to identify host factors involved in HIVâ€1 replication. Biotechnology Journal, 2010, 5, 39-49.	3.5	39
101	Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds. Journal of Medicinal Chemistry, 2016, 59, 545-558.	6.4	39
102	Functional organization of the HIV lipid envelope. Scientific Reports, 2016, 6, 34190.	3.3	38
103	Splicing of human immunodeficiency virus RNA is position-dependent suggesting sequential removal of introns from the 5' end. Nucleic Acids Research, 2005, 33, 825-837.	14.5	37
104	Role of the SP2 Domain and Its Proteolytic Cleavage in HIV-1 Structural Maturation and Infectivity. Journal of Virology, 2012, 86, 13708-13716.	3.4	37
105	NSs amyloid formation is associated with the virulence of Rift Valley fever virus in mice. Nature Communications, 2020, 11, 3281.	12.8	36
106	Ubiquitination of Human Immunodeficiency Virus Type 1 Gag Is Highly Dependent on Gag Membrane Association. Journal of Virology, 2007, 81, 9193-9201.	3.4	35
107	Detailed Characterization of Early HIV-1 Replication Dynamics in Primary Human Macrophages. Viruses, 2018, 10, 620.	3.3	34
108	Analysis of CA Content and CPSF6 Dependence of Early HIV-1 Replication Complexes in SupT1-R5 Cells. MBio, 2019, 10, .	4.1	34

HANS-GEORG KRÃ**¤**SSLICH

#	Article	IF	CITATIONS
109	Competitive Inhibition of Human Immunodeficiency Virus Type-1 Protease by the Gag-Pol Transframe Protein. Journal of Biological Chemistry, 1999, 274, 21539-21543.	3.4	33
110	HIV-1–cellular interactions analyzed by single virus tracing. European Biophysics Journal, 2008, 37, 1291-1301.	2.2	30
111	Stimulated Emission Depletion Nanoscopy Reveals Time-Course of Human Immunodeficiency Virus Proteolytic Maturation. ACS Nano, 2016, 10, 8215-8222.	14.6	30
112	Nucleocytoplasmic RNA Transport in Retroviral Replication. Results and Problems in Cell Differentiation, 2001, 34, 197-217.	0.7	30
113	Mutation of the major 5′ splice site renders a CMV-driven HIV-1 proviral clone Tat-dependent: connections between transcription and splicing. FEBS Letters, 2004, 563, 113-118.	2.8	29
114	Multimerizable HIV Gag derivative binds to the liquid-disordered phase in model membranes. Cellular Microbiology, 2013, 15, 237-247.	2.1	29
115	Induced Maturation of Human Immunodeficiency Virus. Journal of Virology, 2014, 88, 13722-13731.	3.4	29
116	Pooled RT-qPCR testing for SARS-CoV-2 surveillance in schools - a cluster randomised trial. EClinicalMedicine, 2021, 39, 101082.	7.1	29
117	IFITM3 Clusters on Virus Containing Endosomes and Lysosomes Early in the Influenza A Infection of Human Airway Epithelial Cells. Viruses, 2019, 11, 548.	3.3	28
118	Single-Use Capture Purification of Adeno-Associated Viral Gene Transfer Vectors by Membrane-Based Steric Exclusion Chromatography. Human Gene Therapy, 2021, 32, 959-974.	2.7	28
119	Nuclear RNAs confined to a reticular compartment between chromosome territories. Experimental Cell Research, 2005, 302, 180-193.	2.6	27
120	Superâ€resolved insights into human immunodeficiency virus biology. FEBS Letters, 2016, 590, 1858-1876.	2.8	26
121	Configurations of Diastereomeric Hydroxyethylene Isosteres Strongly Affect Biological Activities of a Series of Specific Inhibitors of Human-Immunodeficiency-Virus Proteinase. FEBS Journal, 1997, 250, 559-566.	0.2	25
122	Divergent Evolution in Reverse Transcriptase (RT) of HIV-1 Group O and M Lineages: Impact on Structure, Fitness, and Sensitivity to Nonnucleoside RT Inhibitors. Journal of Virology, 2010, 84, 9817-9830.	3.4	25
123	Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor. Nature Communications, 2015, 6, 6461.	12.8	25
124	Genome packaging of reovirus is mediated by the scaffolding property of the microtubule network. Cellular Microbiology, 2017, 19, e12765.	2.1	25
125	Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 in Households with Children, Southwest Germany, May–August 2020. Emerging Infectious Diseases, 2021, 27, 3009-3019.	4.3	25
126	HIV Drug Resistance Pattern Among HAART-Exposed Patients With Suboptimal Virological Response in Ouagadougou, Burkina Faso. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 17-25.	2.1	24

#	Article	IF	CITATIONS
127	Diversity of HIV in Rural Burkina Faso. Journal of Acquired Immune Deficiency Syndromes (1999), 2006, 43, 144-152.	2.1	23
128	The Nucleocapsid Domain of Gag Is Dispensable for Actin Incorporation into HIV-1 and for Association of Viral Budding Sites with Cortical F-Actin. Journal of Virology, 2014, 88, 7893-7903.	3.4	23
129	Analysis of the diversity of the HIVâ€1 <i>pol</i> gene and drug resistance associated changes among drugâ€naÃ⁻ve patients in Burkina Faso. Journal of Medical Virology, 2009, 81, 1691-1701.	5.0	22
130	Investigating the Role of F-Actin in Human Immunodeficiency Virus Assembly by Live-Cell Microscopy. Journal of Virology, 2014, 88, 7904-7914.	3.4	22
131	Microscopyâ€based assay for semiâ€quantitative detection of SARS oVâ€2 specific antibodies in human sera. BioEssays, 2021, 43, e2000257.	2.5	22
132	HIV-1 capsid is the key orchestrator of early viral replication. PLoS Pathogens, 2021, 17, e1010109.	4.7	22
133	The Cellular Protein Lyric Interacts with HIV-1 Gag. Journal of Virology, 2011, 85, 13322-13332.	3.4	20
134	Cholesterol in the Viral Membrane is a Molecular Switch Governing HIVâ€I Env Clustering. Advanced Science, 2021, 8, 2003468.	11.2	20
135	Potency Comparison of Peptidomimetic Inhibitors against HIV-1 and HIV-2 Proteinases: Design of Equipotent Lead Compounds. Archives of Biochemistry and Biophysics, 1997, 341, 62-69.	3.0	18
136	Comprehensive Mutational Analysis Reveals p6 ^{Gag} Phosphorylation To Be Dispensable for HIV-1 Morphogenesis and Replication. Journal of Virology, 2013, 87, 724-734.	3.4	17
137	RNA and Nucleocapsid Are Dispensable for Mature HIV-1 Capsid Assembly. Journal of Virology, 2015, 89, 9739-9747.	3.4	17
138	A Modular Approach to HIV-1 Proteinase Inhibitor Design. Biochemical and Biophysical Research Communications, 1996, 222, 38-43.	2.1	16
139	The Major 5′ End of HIV Type 1 RNA Corresponds to G456. AIDS Research and Human Retroviruses, 2007, 23, 1042-1048.	1.1	16
140	Acetylation of the foamy virus transactivator Tas by PCAF augments promoter-binding affinity and virus transcription. Journal of General Virology, 2007, 88, 259-263.	2.9	16
141	A Randomized Open label Phase-II Clinical Trial with or without Infusion of Plasma from Subjects after Convalescence of SARS-CoV-2 Infection in High-Risk Patients with Confirmed Severe SARS-CoV-2 Disease (RECOVER): A structured summary of a study protocol for a randomised controlled trial. Trials, 2020, 21. 828.	1.6	16
142	An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data. Retrovirology, 2012, 9, 60.	2.0	15
143	Lipidomimetic Compounds Act as HIV-1 Entry Inhibitors by Altering Viral Membrane Structure. Frontiers in Immunology, 2018, 9, 1983.	4.8	14
144	Expression of biologically active HIV glycoproteins using a T7 RNA polymerase-based eucaryotic vector system. Virus Genes, 1992, 6, 229-246.	1.6	11

#	Article	IF	CITATIONS
145	The Murine Endogenous Retrovirus MIA14 Encodes an Active Aspartic Proteinase That Is Functionally Similar to Proteinases from D-Type Retroviruses. Archives of Biochemistry and Biophysics, 2002, 398, 261-268.	3.0	11
146	Transport of the Intracisternal A-Type Particle Gag Polyprotein to the Endoplasmic Reticulum Is Mediated by the Signal Recognition Particle. Journal of Virology, 2003, 77, 6293-6304.	3.4	11
147	Reply to "Can HIV-1 Entry Sites Be Deduced by Comparing Bulk Endocytosis to Functional Readouts for Viral Fusion?― Journal of Virology, 2015, 89, 2986-2987.	3.4	11
148	From Multiplex Serology to Serolomics—A Novel Approach to the Antibody Response against the SARS-CoV-2 Proteome. Viruses, 2021, 13, 749.	3.3	11
149	Generation of Human Lung Organoid Cultures from Healthy and Tumor Tissue to Study Infectious Diseases. Journal of Virology, 2022, 96, e0009822.	3.4	11
150	Immune Reconstitution During the First Year of Antiretroviral Therapy of HIV-1-Infected Adults in Rural Burkina Faso. Open AIDS Journal, 2012, 6, 16-25.	0.5	10
151	Parameters Influencing Measurement of the Gag Antigen-Specific T-Proliferative Response to HIV Type 1 Infection. AIDS Research and Human Retroviruses, 2000, 16, 259-271.	1.1	9
152	Mutations in Multiple Domains of Gag Drive the Emergence of <i>In Vitro</i> Resistance to the Phosphonate-Containing HIV-1 Protease Inhibitor GS-8374. Journal of Virology, 2013, 87, 454-463.	3.4	9
153	A recombinant virus assay using full-length envelope sequences to detect changes in HIV-1 co-receptor usage. Virus Genes, 2001, 23, 281-290.	1.6	8
154	An Outpatient Management Strategy Using a Coronataxi Digital Early Warning System Reduces Coronavirus Disease 2019 Mortality. Open Forum Infectious Diseases, 2022, 9, ofac063.	0.9	7
155	Photocaged Hoechst Enables Subnuclear Visualization and Cell Selective Staining of DNA <i>in vivo</i> . ChemBioChem, 2021, 22, 548-556.	2.6	6
156	Re-visiting the functional Relevance of the highly conserved Serine 40 Residue within HIV-1 p6Gag. Retrovirology, 2014, 11, 114.	2.0	5
157	Selection of Potent Non-Toxic Inhibitory Sequences from a Randomized HIV-1 Specific Lentiviral Short Hairpin RNA Library. PLoS ONE, 2010, 5, e13172.	2.5	5
158	Genetic analysis and gene expression of human immunodeficiency virus. Current Opinion in Genetics and Development, 1992, 2, 82-89.	3.3	4
159	HIV: Epidemiology and Strategies for Therapy and Vaccination. Intervirology, 2002, 45, 260-266.	2.8	4
160	Genotypic resistance testing in HIV by arrayed primer extension. Analytical and Bioanalytical Chemistry, 2008, 391, 1661-1669.	3.7	4
161	Coronataxi Brings Outpatient Care to COVID-19 Patients. Annals of Emergency Medicine, 2020, 76, 811-812.	0.6	4
162	The secrets of the stability of the HIV-1 capsid. ELife, 2018, 7, .	6.0	4

#	Article	IF	CITATIONS
163	Activation and maturation of peripheral blood T cells in HIV-1-infected and HIV-1-uninfected adults in Burkina Faso: a cross-sectional study. Journal of the International AIDS Society, 2011, 14, 57.	3.0	3
164	Delayed detection of cytomegalovirus-specific T-helper cells in a preterm infant following intrauterine exposure to tacrolimus. Clinical Laboratory, 2012, 58, 811-5.	0.5	3
165	Constitutive activation and accelerated maturation of peripheral blood t cells in healthy adults in burkina faso compared to Germany: The case of malaria?. European Journal of Medical Research, 2011, 16, 519.	2.2	1
166	Cross-Clade Recognition of HIV-1 CAp24 by CD4+ T Cells in HIV-1-Infected Individuals in Burkina Faso and Germany. Open AIDS Journal, 2009, 3, 4-7.	0.5	1
167	Seroconversion Rates After the Second COVID-19 Vaccination in Patients With Systemic Light Chain (AL) amyloidosis. HemaSphere, 2022, 6, e688.	2.7	1
168	Viruses: Membranes in Disguise - Editorial on the special issue reporting on the priority program 1175 of the Deutsche Forschungsgemeinschaft (German Research Foundation): â€~Dynamics of cellular membranes and their exploitation by viruses'. Cellular Microbiology, 2013, 15, 159-160.	2.1	0
169	Integrative analysis of pathogen replication and spread: zooming into increasing complexity. FEBS Letters, 2016, 590, 1855-1857.	2.8	Ο
170	Modeling the Flat to Curved Transition during Clathrin Mediated Endocytosis. Biophysical Journal, 2018, 114, 280a.	0.5	0