
Li Zhaoping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6585169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Parallel Advantage: Further Evidence for Bottom-up Saliency Computation by Human Primary Visual Cortex. Perception, 2022, 51, 60-69.	1.2	5
2	Contributed Session III: Central-Peripheral Dichotomy (CPD) in feedforward and feedback processes explored by depth perception in random-dot stereograms (RDSs). Journal of Vision, 2022, 22, 28.	0.3	0
3	The central-peripheral dichotomy and metacontrast masking. Perception, 2022, 51, 549-564.	1.2	3
4	Measuring the saliency of an invisible visual feature and its interaction with visible features. Journal of Vision, 2021, 21, 2930.	0.3	0
5	Contrast-reversed binocular dot-pairs in random-dot stereograms for depth perception in central visual field: Probing the dynamics of feedforward-feedback processes in visual inference. Vision Research, 2021, 186, 124-139.	1.4	6
6	Feedforward-Feedback-verify-reWeight (FFVW) and perceptual impact of contrast-reversed binocular dot-pairs in random dot stereograms. Journal of Vision, 2021, 21, 2785.	0.3	0
7	The Flip Tilt Illusion: Visible in Peripheral Vision as Predicted by the Central-Peripheral Dichotomy. I-Perception, 2020, 11, 204166952093840.	1.4	6
8	Artificial and Natural Intelligence: From Invention to Discovery. Neuron, 2020, 105, 413-415.	8.1	4
9	Neural representation of illusory reversed depth in anti-correlated random-dot stereograms across visual cortical areas in central and peripheral visual fields: An fMRI study. Journal of Vision, 2020, 20, 1522.	0.3	0
10	Face perception inherits low-level binocular adaptation. Journal of Vision, 2019, 19, 7.	0.3	3
11	A new framework for understanding vision from the perspective of the primary visual cortex. Current Opinion in Neurobiology, 2019, 58, 1-10.	4.2	58
12	Reversed Depth in Anticorrelated Random-Dot Stereograms and the Central-Peripheral Difference in Visual Inference. Perception, 2018, 47, 531-539.	1.2	18
13	Bottom-up saliency and top-down learning in the primary visual cortex of monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10499-10504.	7.1	51
14	Ocularity Feature Contrast Attracts Attention Exogenously. Vision (Switzerland), 2018, 2, 12.	1.2	4
15	Feedback from higher to lower visual areas for visual recognition may be weaker in the periphery: Glimpses from the perception of brief dichoptic stimuli. Vision Research, 2017, 136, 32-49.	1.4	26
16	Efficient coding as the provenance of matched and opposite neuronal feature preferences for multisensory and multi-modal inputs. Journal of Vision, 2017, 17, 599.	0.3	0
17	From the optic tectum to the primary visual cortex: migration through evolution of the saliency map for exogenous attentional guidance. Current Opinion in Neurobiology, 2016, 40, 94-102.	4.2	51
18	Brains studying brains: look before you think in vision. Physical Biology, 2016, 13, 035002.	1.8	1

LI ZHAOPING

#	Article	IF	CITATIONS
19	Efficient Coding Theory Predicts a Tilt Aftereffect from Viewing Untilted Patterns. Current Biology, 2016, 26, 1571-1576.	3.9	45
20	Modulation of Neuronal Responses by Exogenous Attention in Macaque Primary Visual Cortex. Journal of Neuroscience, 2015, 35, 13419-13429.	3.6	27
21	Properties of V1 Neurons Tuned to Conjunctions of Visual Features: Application of the V1 Saliency Hypothesis to Visual Search behavior. PLoS ONE, 2012, 7, e36223.	2.5	23
22	Gaze capture by eye-of-origin singletons: Interdependence with awareness. Journal of Vision, 2012, 12, 17-17.	0.3	35
23	Neural circuit models for computations in early visual cortex. Current Opinion in Neurobiology, 2011, 21, 808-815.	4.2	14
24	A clash of bottom-up and top-down processes in visual search: The reversed letter effect revisited Journal of Experimental Psychology: Human Perception and Performance, 2011, 37, 997-1006.	0.9	22
25	Human Wavelength Discrimination of Monochromatic Light Explained by Optimal Wavelength Decoding of Light of Unknown Intensity. PLoS ONE, 2011, 6, e19248.	2.5	33
26	Relative contributions of 2D and 3D cues in a texture segmentation task, implications for the roles of striate and extrastriate cortex in attentional selection. Journal of Vision, 2009, 9, 20-20.	0.3	17
27	Filling-In and Suppression of Visual Perception from Context: A Bayesian Account of Perceptual Biases by Contextual Influences. PLoS Computational Biology, 2008, 4, e14.	3.2	41
28	After-searchvisual search by gaze shifts after input image vanishes. Journal of Vision, 2008, 8, 26-26.	0.3	11
29	Attention capture by eye of origin singletons even without awareness—A hallmark of a bottom-up saliency map in the primary visual cortex. Journal of Vision, 2008, 8, 1.	0.3	141
30	Psychophysical Tests of the Hypothesis of a Bottom-Up Saliency Map in Primary Visual Cortex. PLoS Computational Biology, 2007, 3, e62.	3.2	92
31	Interference with Bottom-Up Feature Detection by Higher-Level Object Recognition. Current Biology, 2007, 17, 26-31.	3.9	46
32	FPGA-Accelerated Pre-Attentive Segmentation in Primary Visual Cortex. , 2006, , .		6
33	Theoretical understanding of the early visual processes by data compression and data selection. Network: Computation in Neural Systems, 2006, 17, 301-334.	3.6	114
34	Pre-attentive visual selection. Neural Networks, 2006, 19, 1437-1439.	5.9	27
35	A theory of a saliency map in primary visual cortex (V1) tested by psychophysics of colour–orientation interference in texture segmentation. Visual Cognition, 2006, 14, 911-933.	1.6	40
36	Border Ownership from Intracortical Interactions in Visual Area V2. Neuron, 2005, 47, 143-153.	8.1	153

LI ZHAOPING

#	Article	IF	CITATIONS
37	V1 mechanisms and some figure–ground and border effects. Journal of Physiology (Paris), 2003, 97, 503-515.	2.1	73
38	Pre–attentive segmentation and correspondence in stereo. Philosophical Transactions of the Royal Society B: Biological Sciences, 2002, 357, 1877-1883.	4.0	25
39	A saliency map in primary visual cortex. Trends in Cognitive Sciences, 2002, 6, 9-16.	7.8	558