
Enrique Gomez-Bengoa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6584230/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereoselective, Ruthenium-Photocatalyzed Synthesis of 1,2-Diaminotruxinic Bis-amino Acids from 4-Arylidene-5(4H)-oxazolones. Journal of Organic Chemistry, 2022, , .	3.2	6
2	Synthesis of Cyclometalated Gold(III) Complexes via Catalytic Rhodium to Gold(III) Transmetalation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
3	2―and 6â€Purinylmagnesium Halides in Dichloromethane: Scope and New Insights into the Solvent Influence on the Câ^'Mg Bond. European Journal of Organic Chemistry, 2022, 2022, .	2.4	1
4	Gold(I)-Catalyzed Cycloisomerization/Hetero-Diels–Alder Reaction/Ring Opening Cascade to Functionalized Cyclopentadienes. Journal of Organic Chemistry, 2022, 87, 6038-6051.	3.2	3
5	An Expedient Method for the Umpolung Coupling of Enols with Heteronucleophiles**. Chemistry - A European Journal, 2022, 28, .	3.3	4
6	Unexpected metal-free synthesis of trifluoromethyl arenes <i>via</i> tandem coupling of dicyanoalkenes and conjugated fluorinated sulfinyl imines. Chemical Communications, 2021, 57, 8023-8026.	4.1	2
7	Indium(III)-Catalyzed Stereoselective Synthesis of Tricyclic Frameworks by Cascade Cycloisomerization Reactions of Aryl 1,5-Enynes. Journal of Organic Chemistry, 2021, 86, 9515-9529.	3.2	9
8	Zinc lodide Catalyzed Synthesis of Trisubstituted Allenes from Terminal Alkynes and Ketones. ACS Omega, 2021, 6, 23329-23346.	3.5	7
9	Stereoselective Alkylation of Chiral Titanium(IV) Enolates with <i>tert</i> Butyl Peresters. Organic Letters, 2021, 23, 8852-8856.	4.6	2
10	Intramolecular Palladium(II)-Catalyzed 6- <i>endo</i> C–H Alkenylation Directed by the Remote <i>N</i> -Protecting Group: Mechanistic Insight and Application to the Synthesis of Dihydroquinolines. Journal of Organic Chemistry, 2020, 85, 2486-2503.	3.2	9
11	Stereoselective Decarboxylative Alkylation of Titanium(IV) Enolates with Diacyl Peroxides. Organic Letters, 2020, 22, 199-203.	4.6	9
12	Au ^I -Catalyzed Hydroalkynylation of Haloalkynes. Journal of the American Chemical Society, 2020, 142, 16082-16089.	13.7	26
13	Unravelling mechanistic insights in the platinum-catalysed dihydroalkoxylation of allenes. Pure and Applied Chemistry, 2020, 92, 167-177.	1.9	1
14	Pentannulation of N-heterocycles by a tandem gold-catalyzed [3,3]-rearrangement/Nazarov reaction of propargyl ester derivatives: a computational study on the crucial role of the nitrogen atom. Beilstein Journal of Organic Chemistry, 2020, 16, 3059-3068.	2.2	2
15	Oxidant speciation and anionic ligand effects in the gold-catalyzed oxidative coupling of arenes and alkynes. Chemical Science, 2019, 10, 8411-8420.	7.4	32
16	Base-Catalyzed [1, <i>n</i>]-Proton Shifts in Conjugated Polyenyl Alcohols and Ethers. ACS Catalysis, 2019, 9, 9134-9139.	11.2	15
17	Synthesis of Indenes by Tandem Gold(I)-Catalyzed Claisen Rearrangement/Hydroarylation Reaction of Propargyl Vinyl Ethers. Journal of Organic Chemistry, 2019, 84, 6298-6311.	3.2	14
18	DFT studies on metal-catalyzed cycloisomerization of <i>trans</i> -1,5-enynes to cyclopropane sesquiterpenoids. Organic and Biomolecular Chemistry, 2019, 17, 5112-5120.	2.8	10

Enrique Gomez-Bengoa

#	Article	IF	CITATIONS
19	An umpolung strategy to react catalytic enols with nucleophiles. Nature Communications, 2019, 10, 5244.	12.8	23
20	Baldwin-Type Rules for Metal-Controlled Intramolecular Migratory Insertions. A Computational Study of Ni, Pd, and Pt Case. Organometallics, 2018, 37, 390-395.	2.3	13
21	Enantioselective Michael Addition of Aldehydes to Maleimides Organocatalyzed by a Chiral Primary Amine-Salicylamide. Molecules, 2018, 23, 3299.	3.8	17
22	Synthesis of 3â€Aminoâ€1â€benzothiopheneâ€1,1â€diones by Alkyne Directed Hydroarylation and 1/N→3/C‣ Migration. European Journal of Organic Chemistry, 2018, 2018, 5435-5444.	Sulfonyl 2.4	4
23	Asymmetric Conjugate Addition of α,α-Disubstituted Aldehydes to Nitroalkenes Organocatalyzed by Chiral Monosalicylamides from trans-Cyclohexane-1,2-Diamines. Molecules, 2018, 23, 141.	3.8	8
24	Synthetic and Mechanistic Investigation of an Oxime Ether Electrocyclization Approach to Heteroaromatic Boronic Acid Derivatives. Chemistry - A European Journal, 2018, 24, 9530-9534.	3.3	9
25	Dynamic Kinetic Asymmetric Heck Reaction for the Simultaneous Generation of Central and Axial Chirality. Journal of the American Chemical Society, 2018, 140, 11067-11075.	13.7	98
26	Intermediacy of Ni–Ni Species in sp ² C–O Bond Cleavage of Aryl Esters: Relevance in Catalytic C–Si Bond Formation. Journal of the American Chemical Society, 2018, 140, 8771-8780.	13.7	85
27	Indium(III)-Catalyzed Synthesis of Benzo[<i>b</i>]furans by Intramolecular Hydroalkoxylation of <i>ortho</i> -Alkynylphenols: Scope and Mechanistic Insights. Journal of Organic Chemistry, 2018, 83, 7970-7980.	3.2	43
28	Expeditious diastereoselective synthesis of elaborated ketones via remote Csp3–H functionalization. Nature Communications, 2017, 8, 13832.	12.8	68
29	Selective C(sp ²)–H Halogenation of "Click―4-Aryl-1,2,3-triazoles. Organic Letters, 2017, 19, 962-965.	4.6	34
30	Metal-Free [2 + 2]-Photocycloaddition of (<i>Z</i>)-4-Aryliden-5(4 <i>H</i>)-Oxazolones as Straightforward Synthesis of 1,3-Diaminotruxillic Acid Precursors: Synthetic Scope and Mechanistic Studies. ACS Sustainable Chemistry and Engineering, 2017, 5, 8370-8381.	6.7	20
31	Pd-Catalyzed Hydroamination of Alkoxyallenes with Azole Heterocycles: Examples and Mechanistic Proposal. Organic Letters, 2017, 19, 4211-4214.	4.6	54
32	Preparation of Biodegradable Cationic Polycarbonates and Hydrogels through the Direct Polymerization of Quaternized Cyclic Carbonates. ACS Biomaterials Science and Engineering, 2017, 3, 1567-1575.	5.2	28
33	A Dynamic Kinetic C–P Cross–Coupling for the Asymmetric Synthesis of Axially Chiral P,N Ligands. ACS Catalysis, 2016, 6, 3955-3964.	11.2	95
34	Reply to comment on "Radicalicity: A scale to compare reactivities of radicals― Chemical Physics Letters, 2016, 654, 141.	2.6	0
35	Asymmetric Synthesis of Octahydroindoles via a Domino Robinson Annulation/5-Endo Intramolecular Aza-Michael Reaction. Journal of Organic Chemistry, 2016, 81, 10172-10179.	3.2	15
36	A Modular Class of Fluorescent Difluoroboranes: Synthesis, Structure, Optical Properties, Theoretical Calculations and Applications for Biological Imaging. Chemistry - A European Journal, 2016, 22, 12430-12438.	3.3	32

#	Article	IF	CITATIONS
37	Heterocycle-based bifunctional organocatalysts in asymmetric synthesis. Pure and Applied Chemistry, 2016, 88, 561-578.	1.9	6
38	Construction of Cyclopenta[<i>b</i>]indol-1-ones by a Tandem Gold(I)-Catalyzed Rearrangement/Nazarov Reaction and Application to the Synthesis of Bruceolline H. Organic Letters, 2016, 18, 3922-3925.	4.6	33
39	Synthesis of substituted γ- and δ-lactams based on titanocene(iii)-catalysed radical cyclisations of trichloroacetamides. RSC Advances, 2016, 6, 55360-55365.	3.6	4
40	Bifunctional primary amine 2-aminobenzimidazole organocatalyst anchored to trans-cyclohexane-1,2-diamine in enantioselective conjugate additions of aldehydes. Tetrahedron: Asymmetry, 2016, 27, 118-122.	1.8	22
41	Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates. Polymer Chemistry, 2016, 7, 2105-2111.	3.9	71
42	Annulated Nâ€Heterocycles by Tandem Gold(I)â€Catalyzed [3,3]â€Rearrangement/Nazarov Reaction of Propargylic Ester Derivatives: an Experimental and Computational Study. European Journal of Organic Chemistry, 2015, 2015, 3943-3956.	2.4	32
43	Structure and binding efficiency relations of QB site inhibitors of photosynthetic reaction centres*. General Physiology and Biophysics, 2015, 34, 119-133.	0.9	5
44	Enantioselective addition of aryl ketones and acetone to nitroalkenes organocatalyzed by carbamate-monoprotected cyclohexa-1,2-diamines. Tetrahedron: Asymmetry, 2015, 26, 970-979.	1.8	11
45	Cuâ€Promoted Sydnone Cycloadditions of Alkynes: Scope and Mechanism Studies. Chemistry - A European Journal, 2015, 21, 3257-3263.	3.3	37
46	Solventâ€Induced Reversal of Enantioselectivity in the Synthesis of Succinimides by the Addition of Aldehydes to Maleimides Catalysed by Carbamateâ€Monoprotected 1,2â€Diamines. European Journal of Organic Chemistry, 2015, 2015, 1218-1225.	2.4	44
47	Pyrimidineâ€Derived Prolinamides as Recoverable Bifunctional Organocatalysts for Enantioselective Inter―and Intramolecular Aldol Reactions under Solventâ€Free Conditions. European Journal of Organic Chemistry, 2015, 2015, 2614-2621.	2.4	17
48	Iron-catalyzed direct \hat{l} ±-arylation of ethers with azoles. Chemical Communications, 2015, 51, 13365-13368.	4.1	69
49	Goldâ€Catalysed Synthesis of Exocyclic Vinylogous Amides and βâ€Amino Ketones: A Detailed Study on the 5â€ <i>exo</i> /6â€ <i>endo</i> â€ <i>dig</i> Selectivity, Methodology and Scope. European Journal of Organic Chemistry, 2015, 2015, 3251-3265.	2.4	23
50	Approach to <i>cis</i> -Phlegmarine Alkaloids via Stereodivergent Reduction: Total Synthesis of (+)-Serratezomine E and Putative Structure of (â^)-Huperzine N. Organic Letters, 2015, 17, 5084-5087.	4.6	21
51	Glyoxylic Acid versus Ethyl Glyoxylate for the Aqueous EnantioÂselective Synthesis of α-Hydroxy-γ-Keto Acids and Esters by the N-Tosyl-(S a)-binam-l-prolinamide-Organocatalyzed Aldol Reaction. Synthesis, 2015, 47, 549-561.	2.3	5
52	Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides. Synthesis, 2015, 47, 2199-2206.	2.3	24
53	Radicalicity: A scale to compare reactivities of radicals. Chemical Physics Letters, 2015, 618, 99-101.	2.6	1
54	Enantioselective Construction of Tetrasubstituted Stereogenic Carbons through BrÃ,nsted Base Catalyzed Michael Reactions: α′-Hydroxy Enones as Key Enoate Equivalent. Journal of the American Chemical Society, 2014, 136, 17869-17881.	13.7	118

#	Article	IF	CITATIONS
55	A Neutral Gold(III)–Boron Transmetalation. Organometallics, 2014, 33, 1328-1332.	2.3	68
56	Enantioselective Michael addition of isobutyraldehyde to nitroalkenes organocatalyzed by chiral primary amine-guanidines. Tetrahedron: Asymmetry, 2014, 25, 462-467.	1.8	27
57	Enantioselective Synthesis of Succinimides by Michael Addition of Aldehydes to Maleimides Organocatalyzed by Chiral Primary Amineâ€Guanidines. European Journal of Organic Chemistry, 2013, 2013, 5085-5092.	2.4	40
58	Combined Experimental and Theoretical Study on the Reductive Cleavage of Inert C–O Bonds with Silanes: Ruling out a Classical Ni(O)/Ni(II) Catalytic Couple and Evidence for Ni(I) Intermediates. Journal of the American Chemical Society, 2013, 135, 1997-2009.	13.7	358
59	Enantioselective Michael addition of aldehydes to maleimides organocatalysed by chiral 1,2-diamines: an experimental and theoretical study. Tetrahedron: Asymmetry, 2013, 24, 1531-1535.	1.8	26
60	Enantioselective Synthesis of Succinimides by Michael Addition of 1,3â€Dicarbonyl Compounds to Maleimides Catalyzed by a Chiral Bis(2â€aminobenzimidazole) Organocatalyst. European Journal of Organic Chemistry, 2013, 2013, 1434-1440.	2.4	36
61	Asymmetric synthesis of propargylic alcohols via aldol reaction of aldehydes with ynals promoted by prolinol ether–transition metal–BrÃ,nsted acid cooperative catalysis. Chemical Science, 2013, 4, 3198.	7.4	37
62	Enantioselective direct aldol reaction of α-keto esters catalyzed by (Sa)-binam-d-prolinamide under quasi solvent-free conditions. Organic and Biomolecular Chemistry, 2012, 10, 4029.	2.8	26
63	<i>N</i> â€(Diazoacetyl)oxazolidinâ€2â€thiones as Sulfurâ€Donor Reagents: Asymmetric Synthesis of Thiiranes from Aldehydes. Angewandte Chemie - International Edition, 2012, 51, 10856-10860.	13.8	30
64	Olefin Epoxidation Catalyzed by <i>cis</i> â€Dioxdomolybdenum(VI) Complexes Containing Chiral Alkoxoâ€Imino Ligands Derived from (+)â€Î±â€Pinene. European Journal of Inorganic Chemistry, 2012, 2012, 2940-2949.	2.0	18
65	Goldâ€Catalyzed 1,2â€/1,2â€Bisâ€acetoxy Migration of 1,4â€Bisâ€propargyl Acetates: A Mechanistic Study. Che A European Journal, 2012, 18, 6811-6824.	mistry - 3.3	50
66	Combined α,α-dialkylprolinol ether/BrÃ,nsted acid promotes Mannich reactions of aldehydes with unactivated imines. An entry to anti-configured propargylic amino alcohols. Chemical Science, 2012, 3, 2949.	7.4	50
67	Conjugate Addition of 1,3-Dicarbonyl Compounds to Maleimides Using a Chiral C ₂ -Symmetric Bis(2-aminobenzimidazole) as Recyclable Organocatalyst. Organic Letters, 2011, 13, 6106-6109.	4.6	55
68	Catalytic asymmetric α-alkylation of aldehydesvia a S _N 2′-type addition-elimination pathway. Chemical Science, 2011, 2, 353-357.	7.4	54
69	An Unusual Nâ€Bridged (Amido)(hydrido)(phenoxido)aluminium Dinuclear Compound – The Role of Nitrogen Substituents in Determining Nuclearity: A Combined Experimental and Theoretical Study. European Journal of Inorganic Chemistry, 2010, 2010, 1522-1529.	2.0	14
70	A 4â€Hydroxypyrrolidine atalyzed Mannich Reaction of Aldehydes: Control of <i>antiâ€</i> Selectivity by Hydrogen Bonding Assisted by BrÃ,nsted Acids. Chemistry - A European Journal, 2010, 16, 5333-5342.	3.3	26
71	BrÃ,nsted Acid Assisted Regio―and Enantioselective Direct Oâ€Nitroso Aldol Reaction Catalysed by α,αâ€Diphenylprolinol Trimethylsilyl Ether. Chemistry - A European Journal, 2010, 16, 7496-7502.	3.3	32
72	(1 <i>R</i>)-(+)-Camphor and Acetone Derived α′-Hydroxy Enones in Asymmetric Dielsâ^'Alder Reaction: Catalytic Activation by Lewis and BrĄ̃,nsted Acids, Substrate Scope, Applications in Syntheses, and Mechanistic Studies, Journal of Organic Chemistry, 2010, 75, 1458-1473.	3.2	29

#	Article	IF	CITATIONS
73	Mechanistic Insights in Gold-Stabilized Nonclassical Carbocations: Gold-Catalyzed Rearrangement of 3-Cyclopropyl Propargylic Acetates. Journal of the American Chemical Society, 2010, 132, 4720-4730.	13.7	162
74	Insight intocis-to-transOlefin Isomerisation Catalysed by Group 4 and 6 Cyclopentadienyl Compounds. European Journal of Inorganic Chemistry, 2009, 2009, 1514-1520.	2.0	13
75	DFT Studies on Double Hydrogen Bond Catalysis of Reactions of Distinct Polarity. European Journal of Organic Chemistry, 2009, 2009, 1207-1213.	2.4	3
76	Amidosilylcyclopentadienyl Monoalkyl Zirconium Compounds: Evidence of a N-Assisted 1,3-Proton Shift Olefin Isomerization Mechanism. Organometallics, 2009, 28, 4165-4169.	2.3	2
77	Chiral 2-Aminobenzimidazoles as Recoverable Organocatalysts for the Addition of 1,3-Dicarbonyl Compounds to Nitroalkenes ^{â€} . Journal of Organic Chemistry, 2009, 74, 6163-6168.	3.2	147
78	Investigation of the Scope and Regiochemistry of Alkynylboronate Cycloadditions with Sydnones. Journal of the American Chemical Society, 2009, 131, 7762-7769.	13.7	92
79	Mechanistic Insights on the Magnesium(II) Ion-Activated Reduction of Methyl Benzoylformate with Chelated NADH Peptide β-Lactam Models. Journal of Organic Chemistry, 2009, 74, 6691-6702.	3.2	22
80	3,5â€Bis(trifluoromethyl)phenyl Sulfones for the Highly Stereoselective Julia–Kocienski Synthesis of α,βâ€Unsaturated Esters and Weinreb Amides. European Journal of Organic Chemistry, 2008, 2008, 2915-2922.	2.4	25
81	Highly Efficient and Stereoselective Julia–Kocienski Protocol for the Synthesis of αâ€Fluoroâ€Î±,βâ€unsaturated Esters and Weinreb Amides Employing 3,5â€Bis(trifluoromethyl)phenyl (BTFP) Sulfones. Advanced Synthesis and Catalysis, 2008, 350, 1823-1829.	4.3	48
82	Asymmetric Aza-Henry Reaction Under Phase Transfer Catalysis: An Experimental and Theoretical Study. Journal of the American Chemical Society, 2008, 130, 7955-7966.	13.7	151
83	Sodium Tetramethoxyborate:  An Efficient Catalyst for Michael Additions of Stabilized Carbon Nucleophiles. Journal of Organic Chemistry, 2007, 72, 8127-8130.	3.2	25
84	The Participation of Alkynylboronates in Inverse Electron Demand [4 + 2] Cycloadditions:Â A Mechanistic Study. Journal of the American Chemical Society, 2007, 129, 2691-2699.	13.7	62
85	Regio―and Enantioselective Direct Oxyamination Reaction of Aldehydes Catalyzed by α,αâ€Diphenylprolinol Trimethylsilyl Ether. Angewandte Chemie - International Edition, 2007, 46, 8054-8056.	13.8	94
86	Intramolecular Sulfur Transfer inN-Enoyl Oxazolidine-2-thiones Promoted by BrÃ,nsted Acids. Practical Asymmetric Synthesis of β-Mercapto Carboxylic Acids and Mechanistic Insights. Journal of the American Chemical Society, 2006, 128, 15236-15247.	13.7	28
87	Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroalkenes Catalyzed by a Simpletrans-4-Hydroxyprolylamide. Angewandte Chemie - International Edition, 2006, 45, 5984-5987.	13.8	218
88	Asymmetric propionate aldol reactions of a chiral lithium enolate accessible from direct enolization with n-butyllithium. Arkivoc, 2005, 2005, 377-392.	0.5	10
89	Catalytic Enantioselective Conjugate Addition of Carbamates ChemInform, 2004, 35, no.	0.0	0
90	Catalytic Enantioselective Conjugate Addition of Carbamates. Journal of the American Chemical Society, 2004, 126, 9188-9189.	13.7	122

Enrique Gomez-Bengoa

#	Article	IF	CITATIONS
91	Intramolecular Coupling of Allyl Carboxylates with Allyl Stannanes and Allyl Silanes: A New Type of Reductive Elimination Reaction?. Chemistry - A European Journal, 2002, 8, 3620.	3.3	100
92	Phosphazene bases for the preparation of biaryl thioethers from aryl iodides and arenethiols. Tetrahedron Letters, 2000, 41, 1283-1286.	1.4	146
93	Diastereoselective Intramolecular Cycloaddition of Vinylsilanes and Silyl Nitronates. Effective Control of Remote Acyclic Asymmetry. Journal of Organic Chemistry, 1999, 64, 692-693.	3.2	23
94	Phosphazene P4-But base for the Ullmann biaryl ether synthesis. Chemical Communications, 1998, , 2091-2092.	4.1	74
95	Ni-Catalyzed Asymmetric Addition of Grignard Reagents to Unsaturated Cyclic Acetals. The Influence of Added Phosphine on Enantioselectivity. Journal of the American Chemical Society, 1998, 120, 7649-7650.	13.7	88
96	Synthesis of (±)-10-epi-Elemol by a Highly Stereoselective Intramolecular Palladium-Catalyzed Coupling of an Allylstannane with an Allyl Acetate. Journal of Organic Chemistry, 1997, 62, 7540-7541.	3.2	28
97	Cationic Intermediates in the Intramolecular Insertion of Alkenes into(η3-Allyl)palladium(II) Complexes. Angewandte Chemie International Edition in English, 1997, 36, 767-769.	4.4	44
98	Kationische Zwischenstufen bei der intramolekularen Insertion von Alkenen in (Ε ³ â€Allyl)palladium(<scp>II</scp>)â€Komplexe. Angewandte Chemie, 1997, 109, 795-797.	2.0	6
99	Michael Reaction of Stabilized Carbon Nucleophiles Catalyzed by [RuH2(PPh3)4]. Journal of the American Chemical Society, 1996, 118, 8553-8565.	13.7	92
100	Formation of α,β-unsaturated carbonyl compounds by palladium-catalyzed oxidation of allylic alcohols. Tetrahedron Letters, 1994, 35, 7097-7098.	1.4	54
101	Synthesis of isoascididemin, a regioisomer of the marine alkaloid ascididemin. Journal of Organic Chemistry, 1991, 56, 3497-3501.	3.2	100
102	Synthesis of Cyclometalated Gold(III) Complexes via Catalytic Rhodium to Gold(III) Transmetalation. Angewandte Chemie, 0, , .	2.0	0
103	Conformational Flexibility as a Tool for Enabling Site-Selective Functionalization of Unactivated <i>sp</i> ^{<i>3</i>} C–O Bonds in Cyclic Acetals. Journal of the American Chemical Society, 0, , .	13.7	3