
Mariusz Krawiec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583818/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coexistence of two gold-induced one-dimensional structures on a single terrace of the Si(11 11 13). Applied Surface Science, 2022, 573, 151501.	6.1	0
2	On-surface synthesis of a phenylene analogue of nonacene. Chemical Communications, 2022, 58, 4063-4066.	4.1	6
3	Defects in two-dimensional elemental materials beyond graphene. , 2022, , 43-88.		1
4	Evidence of sp2-like Hybridization of Silicon Valence Orbitals in Thin and Thick Si Grown on α-Phase Si(111)â^š3 × â^š3R30°-Bi. Materials, 2022, 15, 1730.	2.9	4
5	Thermally Stable and Highly Conductive SAMs on Ag Substrate—The Impact of the Anchoring Group. Advanced Electronic Materials, 2021, 7, 2000947.	5.1	8
6	Layered heterostructure of planar and buckled phases of silicene. 2D Materials, 2021, 8, 035038.	4.4	14
7	Evidence for Electronically Isolated Atomic Chains: Sb–Pb Structures on the Si(553) Surface. Journal of Physical Chemistry C, 2021, 125, 15061-15068.	3.1	2
8	Magnetism in Au-Supported Planar Silicene. Nanomaterials, 2021, 11, 2568.	4.1	3
9	Experimental evidence of a new class of massless fermions. Nanoscale Horizons, 2020, 5, 679-682.	8.0	5
10	Hut-shaped lead nanowires with one-dimensional electronic properties. Physical Review B, 2020, 102, .	3.2	3
11	Molecular Structure and Electronic Properties of <i>para</i> -Hexaphenyl Monolayer on Atomically Flat Rutile TiO ₂ (110). Journal of Physical Chemistry C, 2020, 124, 5681-5689.	3.1	3
12	Partially embedded Pb chains on a vicinal Si(113) surface. Physical Review B, 2020, 101, .	3.2	4
13	Antimonene on Pb quantum wells. 2D Materials, 2019, 6, 045028.	4.4	18
14	New Findings on Multilayer Silicene on Si(111)â^š3×â^š3R30°–Ag Template. Materials, 2019, 12, 2258.	2.9	14
15	Planar Silicene: A New Silicon Allotrope Epitaxially Grown by Segregation. Advanced Functional Materials, 2019, 29, 1906053.	14.9	37
16	Formation of Silicene on Ultrathin Pb(111) Films. Journal of Physical Chemistry C, 2019, 123, 17019-17025.	3.1	40
17	Oscillation in the stability of consecutive chemical bonds at the molecule–metal interface – the case of ionic bonding. Physical Chemistry Chemical Physics, 2019, 21, 13411-13414.	2.8	2
18	Functionalization of group-14 two-dimensional materials. Journal of Physics Condensed Matter, 2018, 30, 233003.	1.8	23

#	Article	IF	CITATIONS
19	Rehybridization-induced charge density oscillations in the long-range corrugated silicene. Physical Chemistry Chemical Physics, 2017, 19, 14269-14275.	2.8	3
20	Purely one-dimensional bands with a giant spin-orbit splitting: Pb nanoribbons on Si(553) surface. Scientific Reports, 2017, 7, 46215.	3.3	26
21	Tuning the surface structure and conductivity of niobium-doped rutile TiO ₂ single crystals via thermal reduction. Physical Chemistry Chemical Physics, 2017, 19, 30339-30350.	2.8	9
22	Nonacene Generated by On-Surface Dehydrogenation. ACS Nano, 2017, 11, 9321-9329.	14.6	107
23	Synthesis of Multilayer Silicene on Si(111)â^š3 × â^š3-Ag. Journal of Physical Chemistry C, 2017, 121, 27182-27190.	3.1	34
24	Structural model of silicene-like nanoribbons on a Pb-reconstructed Si(111) surface. Beilstein Journal of Nanotechnology, 2017, 8, 1836-1843.	2.8	7
25	Tuning the Electronic Structure of Hydrogen-Decorated Silicene. Condensed Matter, 2017, 2, 1.	1.8	11
26	Silicene Nanoribbons on Pb-Reconstructed Si(111) Surface. Condensed Matter, 2016, 1, 8.	1.8	11
27	Early Stage of Sb Ultra-Thin Film Growth: Crystal Structure and Electron Band Structure. Condensed Matter, 2016, 1, 11.	1.8	4
28	Spilling of electronic states in Pb quantum wells. Physical Review B, 2016, 93, .	3.2	7
29	Electrical and mechanical controlling of the kinetic and magnetic properties of hydrogen atoms on free-standing silicene. Journal of Physics Condensed Matter, 2016, 28, 284004.	1.8	11
30	Resolving the complex structure of molecular networks. Nanotechnology, 2016, 27, 032502.	2.6	0
31	Different spin textures in one-dimensional electronic bands on Si(553)-Au surface. Applied Surface Science, 2016, 373, 26-31.	6.1	17
32	Spin-polarized gapped Dirac spectrum of unsupported silicene. Applied Surface Science, 2016, 373, 45-50.	6.1	7
33	Silicene on metallic quantum wells: An efficient way of tuning silicene-substrate interaction. Physical Review B, 2015, 92, .	3.2	13
34	Dirac fermions in silicene on Pb(111) surface. Physical Chemistry Chemical Physics, 2015, 17, 2246-2251.	2.8	24
35	Quantum size effect in ultrathin Au films on the Si(111) surface. Applied Surface Science, 2015, 331, 512-518.	6.1	8
36	Oscillations in the Stability of Consecutive Chemical Bonds Revealed by Ionâ€Induced Desorption. Angewandte Chemie - International Edition, 2015, 54, 1336-1340.	13.8	17

#	Article	IF	CITATIONS
37	Undercover diffusion of atoms: Pb on Si(5 5 3)-Au surface covered by graphene. Journal of Physics Condensed Matter, 2015, 27, 125003.	1.8	1
38	Surface diffusion of Pb atoms on the Si(553)-Au surface in narrow quasi-one-dimensional channels. Physical Review B, 2014, 89, .	3.2	15
39	Protecting Au-stabilized vicinal Si surfaces from degradation: Graphene on the Si(553)–Au surface. Applied Surface Science, 2014, 304, 44-49.	6.1	4
40	Adsorption and diffusion of atoms on the Si(335)–Au surface. Surface Science, 2014, 622, 9-15.	1.9	5
41	Spin–orbit splitting in the Si(335)–Au surface. Surface Science, 2013, 609, 44-47.	1.9	8
42	Pb nanoribbons on the Si(553) surface. Physical Review B, 2013, 88, .	3.2	20
43	Anisotropic atom diffusion on Si(553)-Au surface. Physical Review B, 2013, 87, .	3.2	23
44	Electronic stabilization of the Si(111)5 × 2–Au surface: Pb and Si adatoms. Journal of Physics Condensed Matter, 2012, 24, 095002.	1.8	5
45	Structural and electronic properties of double Pb chains on the Si(553)-Au surface. Physical Review B, 2011, 84, .	3.2	13
46	One-Dimensional Diffusion of Pb Atoms on the Si(553)-Au Surface. Physical Review Letters, 2011, 107, 026101.	7.8	22
47	Array of double Au–Ag chains on the Si(557) surface. Applied Surface Science, 2010, 256, 4813-4817.	6.1	3
48	Doping of the step-edge Si chain: Ag on a Si(557)-Au surface. Physical Review B, 2010, 82, .	3.2	8
49	Structural model of the Au-induced Si(553) surface: Double Au rows. Physical Review B, 2010, 81, .	3.2	68
50	Pb chains on reconstructed Si(335) surface. Physical Review B, 2009, 79, .	3.2	17
51	In and Si adatoms onSi(111)5×2-Au: Scanning tunneling microscopy and first-principles density functional calculations. Physical Review B, 2009, 80, .	3.2	13
52	STM tunneling through a quantum wire with a side-attached impurity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 154-161.	2.1	5
53	First principles study of Si(3 3 5)–Au surface. Applied Surface Science, 2008, 254, 4318-4321.	6.1	10
54	Thermoelectric Transport through a Quantum Dot Coupled to a Normal Metal and BCS Superconductor. Acta Physica Polonica A, 2008, 114, 115-122.	0.5	8

#	Article	IF	CITATIONS
55	Compensation of the Kondo effect in quantum dots coupled to ferromagnetic leads within the equation of motion approach. Journal of Physics Condensed Matter, 2007, 19, 346234.	1.8	12
56	Thermoelectric phenomena in a quantum dot asymmetrically coupled to external leads. Physical Review B, 2007, 75, .	3.2	49
57	Properties of the π state induced by impurities in a d-wave superconductor. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1066-1067.	1.2	Ο
58	Thermoelectric effects in STM tunneling through a monoatomic chain. Physica Status Solidi (B): Basic Research, 2007, 244, 2464-2469.	1.5	10
59	Particle–hole asymmetry in the scanning tunneling spectroscopy of the high temperature superconductors. Physica Status Solidi (B): Basic Research, 2007, 244, 2448-2452.	1.5	2
60	II.2 Cuprate and other unconventional superconductors. , 2007, , 317-324.		0
61	Origin of spontaneous currents in a superconductor–ferromagnetic proximity system. Physica C: Superconductivity and Its Applications, 2006, 437-438, 7-10.	1.2	7
62	High resolution scanning tunneling spectroscopy of ultrathin Pb on Si(111)-(6×6) substrate. Surface Science, 2006, 600, 1641-1645.	1.9	8
63	Thermoelectric effects in strongly interacting quantum dot coupled to ferromagnetic leads. Physica B: Condensed Matter, 2006, 378-380, 933-934.	2.7	11
64	Superconducting pairing amplitude and local density of states in presence of repulsive centers. Physica B: Condensed Matter, 2006, 378-380, 434-436.	2.7	2
65	Electron transport through a strongly correlated monoatomic chain. Surface Science, 2006, 600, 1697-1701.	1.9	7
66	Residual Kondo effect in quantum dot coupled to half-metallic ferromagnets. Journal of Physics Condensed Matter, 2006, 18, 6923-6936.	1.8	1
67	Double nonequivalent chain structure on a vicinal Si(557)-Au surface. Physical Review B, 2006, 73, .	3.2	46
68	Thermoelectric effects in strongly interacting quantum dot coupled to ferromagnetic leads. Physical Review B, 2006, 73, .	3.2	100
69	Spontaneous Currents in a Ferromagnet-Normal Metal-Superconductor Trilayer. Acta Physica Polonica A, 2006, 109, 507-512.	0.5	2
70	Scanning tunneling microscopy of monoatomic gold chains on vicinal Si(335) surface: experimental and theoretical study. Physica Status Solidi (B): Basic Research, 2005, 242, 332-336.	1.5	26
71	â€Ï€-state' induced by impurities with a repulsive interaction. Physica Status Solidi (B): Basic Research, 2005, 242, 438-442.	1.5	2
72	Current-carrying Andreev bound states in a superconductor-ferromagnet proximity system. Physical Review B, 2004, 70, .	3.2	24

#	Article	IF	CITATIONS
73	Electron transport through a strongly interacting quantum dot coupled to a normal metal and BCS superconductor. Superconductor Science and Technology, 2004, 17, 103-112.	3.5	57
74	Spin polarized current in the ground state of superconductor-ferromagnet-insulator trilayers. European Physical Journal B, 2003, 32, 163-176.	1.5	9
75	Andreev bound states in ferromagnet-superconductor nanostructures. Physica C: Superconductivity and Its Applications, 2003, 387, 7-12.	1.2	8
76	Nonequilibrium Kondo effect in asymmetrically coupled quantum dots. Physical Review B, 2002, 66, .	3.2	37
77	Spontaneous spin-polarized currents in superconductor-ferromagnetic metal heterostructures. Physical Review B, 2002, 66, .	3.2	26
78	Charge on the quantum dot in the presence of tunneling current. Solid State Communications, 2000, 115, 141-144.	1.9	12
79	Spectral Functions of the Quantum Dot Coupled to Normal and/or Superconducting Leads. Acta Physica Polonica A, 2000, 97, 197-200.	0.5	3
80	Superconductivity in correlated systems: Constraint quantization of slave bosons. Physical Review B, 1999, 59, 9500-9507.	3.2	5
81	Do Van Hove Singularities in Leads Influence Tunneling Current through Quantum Dot?. Acta Physica Polonica A, 1998, 94, 411-414.	0.5	1