
Amaia Zurutuza

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/658359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semiquantitative Classification of Two Oxidizing Gases with Graphene-Based Gas Sensors. Chemosensors, 2022, 10, 68.	3.6	5
2	Controlling the threshold voltage of a semiconductor field-effect transistor by gating its graphene gate. Npj 2D Materials and Applications, 2022, 6, .	7.9	6
3	International interlaboratory comparison of Raman spectroscopic analysis of CVD-grown graphene. 2D Materials, 2022, 9, 035010.	4.4	7
4	Gas Cluster Ion Beam Cleaning of CVD-Grown Graphene for Use in Electronic Device Fabrication. ACS Applied Nano Materials, 2021, 4, 5187-5197.	5.0	5
5	Rapid Selective Detection of Ascorbic Acid Using Graphene-Based Microfluidic Platform. IEEE Sensors Journal, 2021, 21, 16744-16753.	4.7	6
6	A direct transfer solution for digital laser printing of CVD graphene. 2D Materials, 2021, 8, 045017.	4.4	7
7	Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 12524-12534.	13.7	62
8	Spectral-Phase Interferometry Detection of Ochratoxin A via Aptamer-Functionalized Graphene Coated Glass. Nanomaterials, 2021, 11, 226.	4.1	13
9	Graphene field effect transistor scaling for ultra-low-noise sensors. Nanotechnology, 2021, 32, 045502.	2.6	5
10	Skin irritation potential of graphene-based materials using a non-animal test. Nanoscale, 2020, 12, 610-622.	5.6	42
11	Laser-induced backward transfer of monolayer graphene. Applied Surface Science, 2020, 533, 147488.	6.1	14
12	Ecotoxicological impact of graphene oxide: toxic effects on the model organism <i>Artemia franciscana</i> . Environmental Science: Nano, 2020, 7, 3605-3615.	4.3	20
13	Partial Reversibility of the Cytotoxic Effect Induced by Graphene-Based Materials in Skin Keratinocytes. Nanomaterials, 2020, 10, 1602.	4.1	8
14	Selective ion sensing with high resolution large area graphene field effect transistor arrays. Nature Communications, 2020, 11, 3226.	12.8	83
15	Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Advanced Composites and Hybrid Materials, 2020, 3, 31-40.	21.1	74
16	Surface analysis and surface doping of graphene on indium-tin-oxide. Thin Solid Films, 2019, 682, 57-62.	1.8	3
17	Investigation of charges-driven interactions between graphene and different SiO2 surfaces. Carbon, 2019, 148, 336-343.	10.3	11
18	High resolution potassium sensing with large-area graphene field-effect transistors. Sensors and Actuators B: Chemical, 2019, 291, 89-95.	7.8	29

Amaia Zurutuza

#	Article	IF	CITATIONS
19	Probing the mechanical properties of vertically-stacked ultrathin graphene/Al ₂ O ₃ heterostructures. Nanotechnology, 2019, 30, 185703.	2.6	9
20	Chemiresistive Graphene Sensors for Ammonia Detection. ACS Applied Materials & Interfaces, 2018, 10, 16169-16176.	8.0	100
21	Ultra-low contact resistance in graphene devices at the Dirac point. 2D Materials, 2018, 5, 025014.	4.4	50
22	Transparent conductors for Mid-infrared liquid crystal spatial light modulators. Thin Solid Films, 2018, 660, 411-420.	1.8	13
23	Plasmon–Plasmon Interactions and Radiative Damping of Graphene Plasmons. ACS Photonics, 2018, 5, 3459-3465.	6.6	17
24	Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosensors and Bioelectronics, 2017, 89, 606-611.	10.1	104
25	Noninvasive Scanning Raman Spectroscopy and Tomography for Graphene Membrane Characterization. Nano Letters, 2017, 17, 1504-1511.	9.1	17
26	Broadband image sensor array based on graphene–CMOS integration. Nature Photonics, 2017, 11, 366-371.	31.4	523
27	High-Gain Graphene Transistors with a Thin AlOx Top-Gate Oxide. Scientific Reports, 2017, 7, 2419.	3.3	36
28	Upscaling high-quality CVD graphene devices to 100 micron-scale and beyond. Applied Physics Letters, 2017, 110, .	3.3	16
29	Flexible Nanoholey Patches for Antibiotic-Free Treatments of Skin Infections. ACS Applied Materials & Interfaces, 2017, 9, 36665-36674.	8.0	42
30	Coating Graphene Oxide with Lipid Bilayers Greatly Decreases Its Hemolytic Properties. Langmuir, 2017, 33, 8181-8191.	3.5	20
31	Capacitive pressure sensing with suspended graphene–polymer heterostructure membranes. Nanoscale, 2017, 9, 17439-17449.	5.6	45
32	Differences in inflammation and acute phase response but similar genotoxicity in mice following pulmonary exposure to graphene oxide and reduced graphene oxide. PLoS ONE, 2017, 12, e0178355.	2.5	71
33	Advances in the fabrication of graphene transistors on flexible substrates. Beilstein Journal of Nanotechnology, 2017, 8, 467-474.	2.8	20
34	Stabilizing a graphene platform toward discrete components. Applied Physics Letters, 2016, 109, 253110.	3.3	16
35	Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene. Nano Letters, 2016, 16, 2988-2993.	9.1	26
36	Capillary pressure in graphene oxide nanoporous membranes for enhanced heat transport in Loop Heat Pipes for aeronautics. Experimental Thermal and Fluid Science, 2016, 78, 147-152.	2.7	11

Amaia Zurutuza

#	Article	IF	CITATIONS
37	Reaction kinetics of bond rotations in graphene. Carbon, 2016, 105, 176-182.	10.3	18
38	Colorimetry Technique for Scalable Characterization of Suspended Graphene. Nano Letters, 2016, 16, 6792-6796.	9.1	23
39	No cytotoxicity or genotoxicity of graphene and graphene oxide in murine lung epithelial FE1 cells in vitro. Environmental and Molecular Mutagenesis, 2016, 57, 469-482.	2.2	82
40	Spatial variation of wear and electrical properties across wrinkles in chemical vapour deposition graphene. Carbon, 2016, 102, 304-310.	10.3	90
41	Effects of humidity on the electronic properties of graphene prepared by chemical vapour deposition. Carbon, 2016, 103, 273-280.	10.3	53
42	Terahertz wafer-scale mobility mapping of graphene on insulating substrates without a gate. Optics Express, 2015, 23, 30721.	3.4	50
43	Up-Scaling Graphene Electronics by Reproducible Metal–Graphene Contacts. ACS Applied Materials & Interfaces, 2015, 7, 9429-9435.	8.0	35
44	Strongly Anisotropic Thermal Conductivity of Free‣tanding Reduced Graphene Oxide Films Annealed at High Temperature. Advanced Functional Materials, 2015, 25, 4664-4672.	14.9	462
45	Determination of a refractive index and an extinction coefficient of standard production of CVD-graphene. Nanoscale, 2015, 7, 1491-1500.	5.6	59
46	Plasmonic photothermal destruction of uropathogenic E. coli with reduced graphene oxide and core/shell nanocomposites of gold nanorods/reduced graphene oxide. Journal of Materials Chemistry B, 2015, 3, 375-386.	5.8	88
47	Stability of graphene doping with MoO3 and I2. Applied Physics Letters, 2014, 105, .	3.3	49
48	Highly Sensitive Detection of DNA Hybridization on Commercialized Graphene-Coated Surface Plasmon Resonance Interfaces. Analytical Chemistry, 2014, 86, 11211-11216.	6.5	106
49	Direct Observation of a Long-Lived Single-Atom Catalyst Chiseling Atomic Structures in Graphene. Nano Letters, 2014, 14, 450-455.	9.1	81
50	Challenges and opportunities in graphene commercialization. Nature Nanotechnology, 2014, 9, 730-734.	31.5	305
51	Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. Journal of Materials Chemistry A, 2013, 1, 3177.	10.3	60
52	Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy. 2D Materials, 0, , .	4.4	11