Cyril H Benes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583552/publications.pdf

Version: 2024-02-01

102	16,917	52	93
papers	citations	h-index	g-index
109	109	109	25982
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Research, 2012, 41, D955-D961.	14.5	2,363
2	Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 2012, 483, 570-575.	27.8	2,173
3	A Landscape of Pharmacogenomic Interactions in Cancer. Cell, 2016, 166, 740-754.	28.9	1,518
4	Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in <i>ALK</i> Rearranged Lung Cancer. Cancer Discovery, 2016, 6, 1118-1133.	9.4	919
5	Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science, 2014, 345, 216-220.	12.6	808
6	Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science, 2014, 346, 1480-1486.	12.6	635
7	Alternative lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors. Science, 2015, 347, 273-277.	12.6	407
8	Stromal Microenvironment Shapes the Intratumoral Architecture of Pancreatic Cancer. Cell, 2019, 178, 160-175.e27.	28.9	367
9	Synthetic Lethal Interaction of Combined BCL-XL and MEK Inhibition Promotes Tumor Regressions in KRAS Mutant Cancer Models. Cancer Cell, 2013, 23, 121-128.	16.8	343
10	HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature, 2016, 537, 102-106.	27.8	335
11	AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies. Cancer Discovery, 2018, 8, 1582-1597.	9.4	310
12	ATR inhibition disrupts rewired homologous recombination and fork protection pathways in PARP inhibitor-resistant BRCA-deficient cancer cells. Genes and Development, 2017, 31, 318-332.	5.9	307
13	BIM Expression in Treatment-Na $\tilde{\mathbb{A}}$ -ve Cancers Predicts Responsiveness to Kinase Inhibitors. Cancer Discovery, 2011, 1, 352-365.	9.4	268
14	Distinct but Concerted Roles of ATR, DNA-PK, and Chk1 in Countering Replication Stress during SÂPhase. Molecular Cell, 2015, 59, 1011-1024.	9.7	266
15	TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion–Positive Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2019, 9, 1064-1079.	9.4	254
16	Drugging MYCN through an Allosteric Transition in Aurora Kinase A. Cancer Cell, 2014, 26, 414-427.	16.8	231
17	Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features. Science, 2019, 364, .	12.6	229
18	Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound <i>ALK</i> Mutations in ALK-Positive Lung Cancer. Cancer Discovery, 2018, 8, 714-729.	9.4	228

#	Article	IF	CITATIONS
19	PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 21124-21129.	7.1	175
20	KRAS G12C NSCLC Models Are Sensitive to Direct Targeting of KRAS in Combination with PI3K Inhibition. Clinical Cancer Research, 2019, 25, 796-807.	7.0	175
21	Measurement of PIP3 Levels Reveals an Unexpected Role for p $110\hat{l}^2$ in Early Adaptive Responses to p $110\hat{l}\pm$ -Specific Inhibitors in Luminal Breast Cancer. Cancer Cell, 2015, 27, 97-108.	16.8	165
22	Transcription Factor Activities Enhance Markers of Drug Sensitivity in Cancer. Cancer Research, 2018, 78, 769-780.	0.9	161
23	Targeting FGFR overcomes EMT-mediated resistance in EGFR mutant non-small cell lung cancer. Oncogene, 2019, 38, 6399-6413.	5.9	160
24	Primary Patient-Derived Cancer Cells and Their Potential for Personalized Cancer Patient Care. Cell Reports, 2017, 21, 3298-3309.	6.4	157
25	SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nature Medicine, 2018, 24, 512-517.	30.7	155
26	PTEN Loss Mediates Clinical Cross-Resistance to CDK4/6 and PI3K \hat{l}_{\pm} Inhibitors in Breast Cancer. Cancer Discovery, 2020, 10, 72-85.	9.4	154
27	Effective drug combinations in breast, colon and pancreatic cancer cells. Nature, 2022, 603, 166-173.	27.8	154
28	Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer. Scientific Reports, 2016, 6, 18517.	3.3	143
29	Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities. Nature Biotechnology, 2017, 35, 983-989.	17.5	138
30	MET Alterations Are a Recurring and Actionable Resistance Mechanism in ALK-Positive Lung Cancer. Clinical Cancer Research, 2020, 26, 2535-2545.	7.0	127
31	Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discovery, 2016, 6, 727-739.	9.4	126
32	Combined MEK and PI3K Inhibition in a Mouse Model of Pancreatic Cancer. Clinical Cancer Research, 2015, 21, 396-404.	7.0	121
33	CellMinerCDB for Integrative Cross-Database Genomics and Pharmacogenomics Analyses of Cancer Cell Lines. IScience, 2018, 10, 247-264.	4.1	117
34	mTOR Inhibition Specifically Sensitizes Colorectal Cancers with <i>KRAS</i> or <i>BRAF</i> Mutations to BCL-2/BCL-XL Inhibition by Suppressing MCL-1. Cancer Discovery, 2014, 4, 42-52.	9.4	116
35	EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell, 2018, 33, 202-216.e6.	16.8	116
36	Discovery and clinical introduction of first-in-class imipridone ONC201. Oncotarget, 2016, 7, 74380-74392.	1.8	111

#	Article	IF	Citations
37	Assessment of ABT-263 activity across a cancer cell line collection leads to a potent combination therapy for small-cell lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1288-96.	7.1	110
38	CDK4/6 and IGF1 Receptor Inhibitors Synergize to Suppress the Growth of p16INK4A-Deficient Pancreatic Cancers. Cancer Research, 2014, 74, 3947-3958.	0.9	107
39	Three subtypes of lung cancer fibroblasts define distinct therapeutic paradigms. Cancer Cell, 2021, 39, 1531-1547.e10.	16.8	106
40	Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell, 2016, 29, 159-172.	16.8	104
41	APOBEC3A and APOBEC3B Activities Render Cancer Cells Susceptible to ATR Inhibition. Cancer Research, 2017, 77, 4567-4578.	0.9	104
42	Differential Effector Engagement by Oncogenic KRAS. Cell Reports, 2018, 22, 1889-1902.	6.4	101
43	Harnessing synthetic lethality to predict the response to cancer treatment. Nature Communications, 2018, 9, 2546.	12.8	97
44	Venetoclax Is Effective in Small-Cell Lung Cancers with High BCL-2 Expression. Clinical Cancer Research, 2018, 24, 360-369.	7.0	96
45	Functional linkage of gene fusions to cancer cell fitness assessed by pharmacological and CRISPR-Cas9 screening. Nature Communications, 2019, 10, 2198.	12.8	92
46	Tracking the Evolution of Resistance to ALK Tyrosine Kinase Inhibitors Through Longitudinal Analysis of Circulating Tumor DNA. JCO Precision Oncology, 2018, 2018, 1-14.	3.0	86
47	Metadata Standard and Data Exchange Specifications to Describe, Model, and Integrate Complex and Diverse High-Throughput Screening Data from the Library of Integrated Network-based Cellular Signatures (LINCS). Journal of Biomolecular Screening, 2014, 19, 803-816.	2.6	80
48	Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin–EGFR Pathway. Cancer Research, 2017, 77, 2018-2028.	0.9	80
49	Combinations of PARP Inhibitors with Temozolomide Drive PARP1 Trapping and Apoptosis in Ewing's Sarcoma. PLoS ONE, 2015, 10, e0140988.	2.5	72
50	Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in <i>KRAS</i> -Mutant Non–Small Cell Lung Cancer. Cancer Discovery, 2018, 8, 1598-1613.	9.4	71
51	Targeted inhibition of histone H3K27 demethylation is effective in high-risk neuroblastoma. Science Translational Medicine, 2018, 10, .	12.4	70
52	EGFR-Mediated Chromatin Condensation Protects KRAS-Mutant Cancer Cells against Ionizing Radiation. Cancer Research, 2014, 74, 2825-2834.	0.9	61
53	BRAF and AXL oncogenes drive RIPK3 expression loss in cancer. PLoS Biology, 2018, 16, e2005756.	5.6	56
54	Preclinical evaluation of the imipridone family, analogs of clinical stage anti-cancer small molecule ONC201, reveals potent anti-cancer effects of ONC212. Cell Cycle, 2017, 16, 1790-1799.	2.6	53

#	Article	IF	Citations
55	Lysine Demethylase KDM4A Associates with Translation Machinery and Regulates Protein Synthesis. Cancer Discovery, 2015, 5, 255-263.	9.4	51
56	Oligosaccharyltransferase Inhibition Overcomes Therapeutic Resistance to EGFR Tyrosine Kinase Inhibitors. Cancer Research, 2018, 78, 5094-5106.	0.9	47
57	Imipridone ONC212 activates orphan G protein-coupled receptor GPR132 and integrated stress response in acute myeloid leukemia. Leukemia, 2019, 33, 2805-2816.	7.2	47
58	PARP-1 inhibition with or without ionizing radiation confers reactive oxygen species-mediated cytotoxicity preferentially to cancer cells with mutant TP53. Oncogene, 2018, 37, 2793-2805.	5.9	42
59	Target-Based Screening against elF4A1 Reveals the Marine Natural Product Elatol as a Novel Inhibitor of Translation Initiation with <i>In Vivo</i> Antitumor Activity. Clinical Cancer Research, 2018, 24, 4256-4270.	7.0	41
60	Potent Dual BET Bromodomain-Kinase Inhibitors as Value-Added Multitargeted Chemical Probes and Cancer Therapeutics. Molecular Cancer Therapeutics, 2017, 16, 1054-1067.	4.1	40
61	Landscape of Targeted Anti-Cancer Drug Synergies in Melanoma Identifies a Novel BRAF-VEGFR/PDGFR Combination Treatment. PLoS ONE, 2015, 10, e0140310.	2.5	39
62	Radioresistance of KRAS/TP53â€mutated lung cancer can be overcome by radiation dose escalation or EGFR tyrosine kinase inhibition in vivo. International Journal of Cancer, 2020, 147, 472-477.	5.1	36
63	Adapting a Drug Screening Platform to Discover Associations of Molecular Targeted Radiosensitizers with Genomic Biomarkers. Molecular Cancer Research, 2015, 13, 713-720.	3.4	34
64	Single agent and synergistic combinatorial efficacy of first-in-class small molecule imipridone ONC201 in hematological malignancies. Cell Cycle, 2018, 17, 468-478.	2.6	34
65	Anti-pancreatic cancer activity of ONC212 involves the unfolded protein response (UPR) and is reduced by IGF1-R and GRP78/BIP. Oncotarget, 2017, 8, 81776-81793.	1.8	34
66	EGFR Inhibition Potentiates FGFR Inhibitor Therapy and Overcomes Resistance in FGFR2 Fusion–Positive Cholangiocarcinoma. Cancer Discovery, 2022, 12, 1378-1395.	9.4	33
67	Cancer stem cell-related gene expression as a potential biomarker of response for first-in-class imipridone ONC201 in solid tumors. PLoS ONE, 2017, 12, e0180541.	2.5	28
68	Preclinical Anticancer Efficacy of BET Bromodomain Inhibitors Is Determined by the Apoptotic Response. Cancer Research, 2016, 76, 1313-1319.	0.9	26
69	Statistical assessment and visualization of synergies for large-scale sparse drug combination datasets. BMC Bioinformatics, 2019, 20, 83.	2.6	26
70	The Ewing Family of Tumors Relies on BCL-2 and BCL-XL to Escape PARP Inhibitor Toxicity. Clinical Cancer Research, 2019, 25, 1664-1675.	7.0	26
71	A Coding Single-Nucleotide Polymorphism in Lysine Demethylase <i>KDM4A</i> Associates with Increased Sensitivity to mTOR Inhibitors. Cancer Discovery, 2015, 5, 245-254.	9.4	25
72	Genomeâ€wide prediction of synthetic rescue mediators of resistance to targeted and immunotherapy. Molecular Systems Biology, 2019, 15, e8323.	7.2	25

#	Article	IF	Citations
73	Gemcitabine and Chk1 Inhibitor AZD7762 Synergistically Suppress the Growth of Lkb1-Deficient Lung Adenocarcinoma. Cancer Research, 2017, 77, 5068-5076.	0.9	24
74	MCT2 mediates concentration-dependent inhibition of glutamine metabolism by MOG. Nature Chemical Biology, 2018, 14, 1032-1042.	8.0	22
75	A Novel Microtubule Inhibitor Overcomes Multidrug Resistance in Tumors. Cancer Research, 2018, 78, 5949-5957.	0.9	18
76	A common Chk1-dependent phenotype of DNA double-strand break suppression in two distinct radioresistant cancer types. Breast Cancer Research and Treatment, 2019, 174, 605-613.	2.5	14
77	N-Arachidonoyl Dopamine Inhibits NRAS Neoplastic Transformation by Suppressing Its Plasma Membrane Translocation. Molecular Cancer Therapeutics, 2017, 16, 57-67.	4.1	13
78	Pharmacological Targeting of Vacuolar H+-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer. Cell Chemical Biology, 2020, 27, 1359-1370.e8.	5.2	13
79	NOTCH1 Represses MCL-1 Levels in GSI-resistant T-ALL, Making them Susceptible to ABT-263. Clinical Cancer Research, 2019, 25, 312-324.	7.0	11
80	Drug/Cell-line Browser: interactive canvas visualization of cancer drug/cell-line viability assay datasets. Bioinformatics, 2014, 30, 3289-3290.	4.1	10
81	Catastrophic ATP loss underlies a metabolic combination therapy tailored for <i>MYCN</i> -amplified neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
82	Venetoclax-based Rational Combinations are Effective in Models of <i>MYCN</i> -amplified Neuroblastoma. Molecular Cancer Therapeutics, 2021, 20, 1400-1411.	4.1	10
83	Screening and Validation of Molecular Targeted Radiosensitizers. International Journal of Radiation Oncology Biology Physics, 2021, 111, e63-e74.	0.8	10
84	Pharmaceutical Interference of the EWS-FLI1–driven Transcriptome By Cotargeting H3K27ac and RNA Polymerase Activity in Ewing Sarcoma. Molecular Cancer Therapeutics, 2021, 20, 1868-1879.	4.1	8
85	Preclinical evaluation of selective inhibitors of nuclear export (SINE) in basal-like breast cancer (BLBC) Journal of Clinical Oncology, 2012, 30, 1055-1055.	1.6	7
86	PD-L1 expression and CD8+ infiltration shows heterogeneity in juvenile recurrent respiratory papillomatosis. International Journal of Pediatric Otorhinolaryngology, 2017, 95, 133-138.	1.0	6
87	Redirecting T-Cells Against AML in a Multidimensional Targeting Space Using T-Cell Engaging Antibody Circuits (TEAC). Blood, 2019, 134, 2653-2653.	1.4	4
88	Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protocols, 2021, 2, 100391.	1.2	2
89	TP53 mutation status: emerging biomarker for precision radiation medicine?. Oncoscience, 2018, 5, 258-259.	2.2	2
90	EXTH-74. IND-ENABLING CHARACTERIZATION OF DUAL DRD2- AND ClpP-TARGETING AGENT ONC206 AS THE NEXT IMIPRIDONE FOR CLINICAL NEURO-ONCOLOGY. Neuro-Oncology, 2020, 22, ii103-ii103.	1.2	2

#	Article	IF	CITATIONS
91	EXTH-71. IND-ENABLING CHARACTERIZATION OF ONC206 AS THE NEXT BITOPIC DRD2 ANTAGONIST FOR NEURO-ONCOLOGY. Neuro-Oncology, 2019, 21, vi97-vi97.	1.2	1
92	Single Agent and Combinatorial Efficacy of First-in-Class Small Molecule ONC201 in Acute Leukemia and Multiple Myeloma. Blood, 2016, 128, 2759-2759.	1.4	1
93	Clinical activity of ONC201 in metastatic castrate resistant prostate cancer (mCRPC) Journal of Clinical Oncology, 2016, 34, e16514-e16514.	1.6	1
94	Direct pharmacological assessment of clinically acquired models as a strategy to overcome resistance to tyrosine kinase inhibitors. Molecular and Cellular Oncology, 2015, 2, e999504.	0.7	0
95	DRES-10. DRD5 IS A MODULATOR OF GLIOMA SUSCEPTIBILITY TO DRD2 ANTAGONISM BY ONC201. Neuro-Oncology, 2018, 20, vi77-vi78.	1.2	O
96	EXTH-17. SELECTIVE, NON-COMPETITIVE DRD2/3 ANTAGONISM BY IMIPRIDONE ONC206 IS EFFECTIVE IN TUMORS WITH DOPAMINE RECEPTOR DYSREGULATION. Neuro-Oncology, 2018, 20, vi88-vi88.	1.2	0
97	Abstract 1053: A large cellular screen charting the landscape of synergistic drug combinations in lung cancer., 2021,,.		0
98	ONC201 Exhibits Mutation-Independent Efficacy with Superior Potency in Non-Hodgkin Lymphoma and Multiple Myeloma. Blood, 2015, 126, 3873-3873.	1.4	0
99	First-in-class small molecule ONC201 in b-cell malignancies Journal of Clinical Oncology, 2016, 34, TPS7581-TPS7581.	1.6	O
100	Structure-activity relationships (SAR) and mechanistic analysis of clinical-stage anti-cancer small molecule ONC201 analogues Journal of Clinical Oncology, 2016, 34, e23161-e23161.	1.6	0
101	Potent Anti-Leukemic Effects of Small Molecule ONC212, a Member of the Imipridone Class of Anti-Cancer Compounds. Blood, 2016, 128, 5133-5133.	1.4	0
102	BIOM-60. BIOMARKER EVALUATION FOR IMIPRIDONE ONC206 REVEALS ClpP, ATF4, MYC, EGFR and HIF1 AS KEY PREDICTORS OF ANTI-CANCER EFFICACY. Neuro-Oncology, 2020, 22, ii14-ii15.	1.2	0