Christopher J Kampf

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583323/publications.pdf

Version: 2024-02-01

331670 377865 3,703 35 21 34 citations g-index h-index papers 36 36 36 4838 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Increased Stress Resistance and Lifespan in Chaenorhabditis elegans Wildtype and Knockout Mutants—Implications for Depression Treatment by Medicinal Herbs. Molecules, 2021, 26, 1827.	3.8	5
2	Anti-inflammatory and tight junction protective activity of the herbal preparation STW 5-II on mouse intestinal organoids. Phytomedicine, 2021, 88, 153589.	5. 3	16
3	Programmed Formation of HCN Oligomers through Organosulfur Catalysis. Journal of Organic Chemistry, 2021, 86, 10320-10329.	3.2	5
4	Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. Atmospheric Chemistry and Physics, 2020, 20, 4193-4207.	4.9	21
5	Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells. Biomolecules, 2020, 10, 1000.	4.0	10
6	Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry. Environmental Science & Environmental Science & 2019, 53, 6192-6202.	10.0	34
7	Anti-inflammatory effects of cinnamon extract and identification of active compounds influencing the TLR2 and TLR4 signaling pathways. Food and Function, 2018, 9, 5950-5964.	4.6	70
8	Electrochemical Arylation Reaction. Chemical Reviews, 2018, 118, 6706-6765.	47.7	616
9	Fresh water, marine and terrestrial cyanobacteria display distinct allergen characteristics. Science of the Total Environment, 2018, 612, 767-774.	8.0	19
10	Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene. Faraday Discussions, 2017, 200, 251-270.	3.2	51
11	Atmospheric protein chemistry influenced by anthropogenic air pollutants: nitration and oligomerization upon exposure to ozone and nitrogen dioxide. Faraday Discussions, 2017, 200, 413-427.	3 . 2	37
12	Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals. Analytical and Bioanalytical Chemistry, 2017, 409, 2411-2420.	3.7	62
13	Simultaneous determination of nitrated and oligomerized proteins by size exclusion high-performance liquid chromatography coupled to photodiode array detection. Journal of Chromatography A, 2017, 1495, 76-82.	3.7	13
14	Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. Environmental Science & Environmental Science & 2017, 51, 4119-4141.	10.0	193
15	Atmospheric chemistry processes: general discussion. Faraday Discussions, 2017, 200, 353-378.	3.2	O
16	The air we breathe: Past, present, and future: general discussion. Faraday Discussions, 2017, 200, 501-527.	3.2	1
17	Aerosol Health Effects from Molecular to Global Scales. Environmental Science & Emp; Technology, 2017, 51, 13545-13567.	10.0	384
18	Light-induced protein nitration and degradation with HONOÂemission. Atmospheric Chemistry and Physics, 2017, 17, 11819-11833.	4.9	22

#	Article	IF	CITATIONS
19	Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 2016, 182, 346-376.	4.1	609
20	Metaproteomic analysis of atmospheric aerosol samples. Analytical and Bioanalytical Chemistry, 2016, 408, 6337-6348.	3.7	16
21	Hydroxyl radicals from secondary organic aerosol decomposition in water. Atmospheric Chemistry and Physics, 2016, 16, 1761-1771.	4.9	138
22	Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects. Physical Chemistry Chemical Physics, 2016, 18, 18353-18364.	2.8	59
23	Ice nucleation by water-soluble macromolecules. Atmospheric Chemistry and Physics, 2015, 15, 4077-4091.	4.9	198
24	Computational Study of the Effect of Glyoxal–Sulfate Clustering on the Henry's Law Coefficient of Glyoxal. Journal of Physical Chemistry A, 2015, 119, 4509-4514.	2.5	35
25	The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chemical Reviews, 2015, 115, 3919-3983.	47.7	417
26	Protein Cross-Linking and Oligomerization through Dityrosine Formation upon Exposure to Ozone. Environmental Science & Environ	10.0	55
27	Novel Tracer Method To Measure Isotopic Labeled Gas-Phase Nitrous Acid (HO ¹⁵ NO) in Biogeochemical Studies. Environmental Science & Environm	10.0	19
28	Nitration of the Birch Pollen Allergen Bet ν 1.0101: Efficiency and Site-Selectivity of Liquid and Gaseous Nitrating Agents. Journal of Proteome Research, 2014, 13, 1570-1577.	3.7	51
29	Determination of nitration degrees for the birch pollen allergen Bet v 1. Analytical and Bioanalytical Chemistry, 2013, 405, 8945-8949.	3.7	22
30	Effective Henry's Law Partitioning and the Salting Constant of Glyoxal in Aerosols Containing Sulfate. Environmental Science & Environmental Scienc	10.0	115
31	First measurements of reactive α-dicarbonyl concentrations on PM _{2.5} aerosol over the Boreal forest in Finland during HUMPPA-COPEC 2010 – source apportionment and links to aerosol aging. Atmospheric Chemistry and Physics, 2012, 12, 6145-6155.	4.9	12
32	Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols. Atmospheric Chemistry and Physics, 2012, 12, 6323-6333.	4.9	147
33	Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates. Nanoscale, 2011, 3, 1158.	5.6	114
34	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. Atmospheric Chemistry and Physics, 2011, 11, 10599-10618.	4.9	108
35	Development and validation of a selective HPLC-ESI-MS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5). Analytical and Bioanalytical Chemistry, 2011, 401, 3115-3124.	3.7	28