Mathias Treier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6583122/publications.pdf

Version: 2024-02-01

257450 377865 4,891 34 24 34 h-index citations g-index papers 35 35 35 6111 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ubiquitin-dependent c-Jun degradation in vivo is mediated by the δdomain. Cell, 1994, 78, 787-798.	28.9	935
2	Somatic Sex Reprogramming of Adult Ovaries to Testes by FOXL2 Ablation. Cell, 2009, 139, 1130-1142.	28.9	815
3	The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development (Cambridge), 2004, 131, 933-942.	2.5	623
4	Reciprocal Interactions of Pit1 and GATA2 Mediate Signaling Gradient–Induced Determination of Pituitary Cell Types. Cell, 1999, 97, 587-598.	28.9	292
5	Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis. Nature Genetics, 2007, 39, 1018-1024.	21.4	221
6	BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nature Methods, 2019, 16, 870-874.	19.0	214
7	Murine inner cell mass-derived lineages depend on Sall4 function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16319-16324.	7.1	171
8	Characterization of progenitor domains in the developing mouse thalamus. Journal of Comparative Neurology, 2007, 505, 73-91.	1.6	141
9	Foxl2 function in ovarian development. Molecular Genetics and Metabolism, 2006, 88, 225-234.	1.1	132
10	The hypothalamic-pituitary axis; co-development of two organs. Current Opinion in Cell Biology, 1996, 8, 833-843.	5.4	129
11	The bHLH factor Olig3 coordinates the specification of dorsal neurons in the spinal cord. Genes and Development, 2005, 19, 733-743.	5.9	128
12	JUN cooperates with the ETS domain protein pointed to induce photoreceptor R7 fate in the Drosophila eye. Cell, 1995, 83, 753-760.	28.9	115
13	A Role for Brain-Specific Homeobox Factor Bsx in the Control of Hyperphagia and Locomotory Behavior. Cell Metabolism, 2007, 5, 450-463.	16.2	103
14	The bHLH transcription factor Olig3 marks the dorsal neuroepithelium of the hindbrain and is essential for the development of brainstem nuclei. Development (Cambridge), 2009, 136, 295-305.	2.5	94
15	Identification of a Novel Family of Ubiquitin-conjugating Enzymes with Distinct Amino-terminal Extensions. Journal of Biological Chemistry, 1996, 271, 2789-2794.	3.4	80
16	Bmp and Wnt/ \hat{l}^2 -catenin signals control expression of the transcription factor Olig3 and the specification of spinal cord neurons. Developmental Biology, 2007, 303, 181-190.	2.0	77
17	Forkhead transcription factors in ovarian function. Reproduction, 2011, 142, 489-495.	2.6	77
18	Follicleâ€stimulating hormone synthesis and fertility depend on SMAD4 and FOXL2. FASEB Journal, 2014, 28, 3396-3410.	0.5	68

#	Article	IF	CITATIONS
19	Lack of an adrenal cortex in Sf1 mutant mice is compatible with the generation and differentiation of chromaffin cells. Development (Cambridge), 2005, 132, 4611-4619.	2.5	67
20	Impaired Fertility and FSH Synthesis in Gonadotrope-Specific Foxl2 Knockout Mice. Molecular Endocrinology, 2013, 27, 407-421.	3.7	64
21	MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Reports, 2018, 19, .	4.5	60
22	Bsx, a Novel Hypothalamic Factor Linking Feeding with Locomotor Activity, Is Regulated by Energy Availability. Endocrinology, 2008, 149, 3009-3015.	2.8	52
23	Role of Foxl2 in uterine maturation and function. Human Molecular Genetics, 2015, 24, 3092-3103.	2.9	30
24	Transcriptional regulators in kidney disease: gatekeepers of renal homeostasis. Trends in Genetics, 2008, 24, 361-371.	6.7	28
25	Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nature Metabolism, 2019, 1, 222-235.	11.9	27
26	Conditional Deletion of FOXL2 and SMAD4 in Gonadotropes of Adult Mice Causes Isolated FSH Deficiency. Endocrinology, 2018, 159, 2641-2655.	2.8	26
27	Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Human Molecular Genetics, 2015, 24, 1670-1681.	2.9	25
28	Differential Regulation of c-Jun and JunD by Ubiquitin-Dependent Protein Degradation. Biological Chemistry Hoppe-Seyler, 1996, 377, 619-624.	1.4	18
29	Epigenetic control of melanoma cell invasiveness by the stem cell factor SALL4. Nature Communications, 2021, 12, 5056.	12.8	15
30	NOTCH activity differentially affects alternative cell fate acquisition and maintenance. ELife, 2018, 7, .	6.0	14
31	Transient development of ovotestes in XX Sox9 transgenic mice. Developmental Biology, 2011, 349, 65-77.	2.0	10
32	MicroRNA-7a2 Regulates Prolactin in Developing Lactotrophs and Prolactinoma Cells. Endocrinology, 2021, 162, .	2.8	10
33	Human Follicle-Stimulating Hormone ß Subunit Expression Depends on FOXL2 and SMAD4. Endocrinology, 2020, 161, .	2.8	8
34	Molecular mechanisms in renal degenerative disease. Seminars in Cell and Developmental Biology, 2010, 21, 831-837.	5.0	7