
Hongning Tong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6582373/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A cryptic inhibitor of cytokinin phosphorelay controls rice grain size. Molecular Plant, 2022, 15, 293-307.	8.3	22
2	The divergence of brassinosteroid sensitivity between rice subspecies involves natural variation conferring altered internal autoâ€binding of OsBSK2. Journal of Integrative Plant Biology, 2022, 64, 1614-1630.	8.5	6
3	Rice DWARF AND LOW-TILLERING and the homeodomain protein OSH15 interact to regulate internode elongation via orchestrating brassinosteroid signaling and metabolism. Plant Cell, 2022, 34, 3754-3772.	6.6	18
4	Diversification of plant agronomic traits by genome editing of brassinosteroid signaling family genes in rice. Plant Physiology, 2021, 187, 2563-2576.	4.8	26
5	Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, 2021, 590, 600-605.	27.8	204
6	POLLEN STERILITY, a novel suppressor of cell division, is required for timely tapetal programmed cell death in rice. Science China Life Sciences, 2021, , 1.	4.9	1
7	Endoplasmic Reticulum-Localized PURINE PERMEASE1 Regulates Plant Height and Grain Weight by Modulating Cytokinin Distribution in Rice. Frontiers in Plant Science, 2020, 11, 618560.	3.6	20
8	Regulation of Brassinosteroid Signaling and Salt Resistance by SERK2 and Potential Utilization for Crop Improvement in Rice. Frontiers in Plant Science, 2020, 11, 621859.	3.6	29
9	ARGONAUTE2 Enhances Grain Length and Salt Tolerance by Activating <i>BIG GRAIN3</i> to Modulate Cytokinin Distribution in Rice. Plant Cell, 2020, 32, 2292-2306.	6.6	91
10	The OsGSK2 Kinase Integrates Brassinosteroid and Jasmonic Acid Signaling by Interacting with OsJAZ4. Plant Cell, 2020, 32, 2806-2822.	6.6	64
11	GSK2 stabilizes OFP3 to suppress brassinosteroid responses in rice. Plant Journal, 2020, 102, 1187-1201.	5.7	55
12	Abscisic Acid Represses Rice Lamina Joint Inclination by Antagonizing Brassinosteroid Biosynthesis and Signaling. International Journal of Molecular Sciences, 2019, 20, 4908.	4.1	18
13	Brassinosteroid-regulated plant growth and development and gene expression in soybean. Crop Journal, 2019, 7, 411-418.	5.2	32
14	<i>Big Grain3,</i> encoding a purine permease, regulates grain size via modulating cytokinin transport in rice. Journal of Integrative Plant Biology, 2019, 61, 581-597.	8.5	73
15	Functional Specificities of Brassinosteroid and Potential Utilization for Crop Improvement. Trends in Plant Science, 2018, 23, 1016-1028.	8.8	153
16	Endosperm sugar accumulation caused by mutation of <i><scp>PHS</scp>8</i> / <i><scp>ISA</scp>1</i> leads to preâ€harvest sprouting in rice. Plant Journal, 2018, 95, 545-556.	5.7	55
17	Physiological Analysis of Brassinosteroid Responses and Sensitivity in Rice. Methods in Molecular Biology, 2017, 1564, 23-29.	0.9	8
18	RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Communications, 2017, 8, 14573.	12.8	202

HONGNING TONG

#	Article	IF	CITATIONS
19	Arabidopsis WRKY46, WRKY54 and WRKY70 Transcription Factors Are Involved in Brassinosteroid-Regulated Plant Growth and Drought Response. Plant Cell, 2017, 29, tpc.00364.2017.	6.6	286
20	Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. Plant Physiology, 2017, 175, 1337-1349.	4.8	107
21	Brassinosteroids Regulate OFP1, a DLT Interacting Protein, to Modulate Plant Architecture and Grain Morphology in Rice. Frontiers in Plant Science, 2017, 8, 1698.	3.6	69
22	Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature Plants, 2016, 2, 15195.	9.3	342
23	Reply: Brassinosteroid Regulates Gibberellin Synthesis to Promote Cell Elongation in Rice: Critical Comments on Ross and Quittenden's Letter. Plant Cell, 2016, 28, 833-835.	6.6	35
24	Activation of <i>Big Grain1</i> significantly improves grain size by regulating auxin transport in rice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11102-11107.	7.1	265
25	Brassinosteroid Regulates Cell Elongation by Modulating Gibberellin Metabolism in Rice Â. Plant Cell, 2014, 26, 4376-4393.	6.6	589
26	Brassinosteroid Signaling and Application in Rice. Journal of Genetics and Genomics, 2012, 39, 3-9.	3.9	54
27	DWARF AND LOW-TILLERING Acts as a Direct Downstream Target of a GSK3/SHAGGY-Like Kinase to Mediate Brassinosteroid Responses in Rice. Plant Cell, 2012, 24, 2562-2577.	6.6	292
28	An AT-hook gene is required for palea formation and floral organ number control in rice. Developmental Biology, 2011, 359, 277-288.	2.0	94
29	ZEBRA2, encoding a carotenoid isomerase, is involved in photoprotection in rice. Plant Molecular Biology, 2011, 75, 211-221.	3.9	54
30	OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Molecular Biology, 2011, 76, 145-156.	3.9	133
31	Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Research, 2010, 20, 838-849.	12.0	138
32	Roles of DLT in fine modulation on brassinosteroid response in rice. Plant Signaling and Behavior, 2009, 4, 438-439.	2.4	19
33	DWARF AND LOWâ€TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant Journal, 2009, 58, 803-816.	5.7	307