Huan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6582144/publications.pdf

Version: 2024-02-01

257450 302126 1,994 46 24 39 citations h-index g-index papers 47 47 47 3276 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Subwavelength-Structure-Assisted Ultracompact Polarization-Handling Components on Silicon. Journal of Lightwave Technology, 2022, 40, 1784-1801.	4.6	12
2	Silicon nonlinear switch as a conditional circulator for monostatic LiDAR systems. Photonics Research, 2022, 10, 426.	7.0	3
3	Compact electro-optic modulator on lithium niobate. Photonics Research, 2022, 10, 697.	7.0	31
4	Toward calibration-free Mach–Zehnder switches for next-generation silicon photonics. Photonics Research, 2022, 10, 793.	7.0	12
5	Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13, 1334.	12.8	23
6	Low-Loss Calibration-Free 2 × 2 Mach-Zehnder Switches With Varied-Width Multimode-Interference Couplers. Journal of Lightwave Technology, 2022, 40, 5254-5259.	4.6	9
7	Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Science and Applications, 2022, 11, .	16.6	24
8	Proposal for collinear integrated acousto-optic tunable filters featuring ultrawide tuning ranges and multi-band operations. Optics Express, 2022, 30, 24747.	3.4	1
9	Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light: Science and Applications, 2021, 10, 123.	16.6	177
10	Direct Visualization of Gigahertz Acoustic Wave Propagation in Suspended Phononic Circuits. Physical Review Applied, 2021, 16, .	3.8	10
11	Calibration-Free Mach-Zehnder Silicon-Photonic Switch. , 2021, , .		0
12	Mach–Zehnder silicon-photonic switch with low random phase errors. Optics Letters, 2021, 46, 78.	3.3	40
13	Calibration-Free 2 x2 Mach-Zehnder Switches with Ultralow-Loss MMI Couplers. , 2021, , .		0
14	Tunable Acousto-Optic Filter Based on Suspended Lithium Niobate Waveguides. , 2021, , .		0
15	Mixedâ€charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1600.	6.1	5
16	Separation of the valley exciton-polariton in two-dimensional semiconductors with an anisotropic photonic crystal. Physical Review B, 2020, 101 , .	3.2	7
17	Dynamic Phonon Manipulation by Optomechanically Induced Strong Coupling between Two Distinct Mechanical Resonators. ACS Photonics, 2019, 6, 1855-1862.	6.6	4
18	Electromechanical Brillouin scattering in integrated planar photonics. APL Photonics, 2019, 4, .	5.7	24

#	Article	IF	CITATIONS
19	mRNA Guided Intracellular Self-Assembly of DNA–Gold Nanoparticle Conjugates as a Precise Trigger to Up-Regulate Cell Apoptosis and Activate Photothermal Therapy. Bioconjugate Chemistry, 2019, 30, 1763-1772.	3.6	17
20	Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency. Biomaterials Science, 2019, 7, 5177-5186.	5.4	21
21	Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material. ACS Photonics, 2019, 6, 87-92.	6.6	124
22	Electromechanical Brillouin scattering in integrated optomechanical waveguides. Optica, 2019, 6, 778.	9.3	55
23	Hemoglobin as a Smart pH-Sensitive Nanocarrier To Achieve Aggregation Enhanced Tumor Retention. Biomacromolecules, 2018, 19, 2007-2013.	5.4	41
24	Design and Proof of Programmed 5-Aminolevulinic Acid Prodrug Nanocarriers for Targeted Photodynamic Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14596-14605.	8.0	66
25	Methemoglobin as a redox-responsive nanocarrier to trigger the in situ anticancer ability of artemisinin. NPG Asia Materials, 2017, 9, e423-e423.	7.9	4
26	Surface-Adaptive Gold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm. ACS Nano, 2017, 11, 9330-9339.	14.6	462
27	Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy. Journal of Colloid and Interface Science, 2017, 485, 251-259.	9.4	40
28	Integrated Two-Dimensional Free-Space Acousto-Optics on Suspended Membranes., 2017,,.		0
29	On-chip Eletromechanically Induced Brillouin Scattering on Suspended Aluminum Nitride Waveguides. , 2017, , .		0
30	Photodynamic Theranostics: Glutathione Activatable Photosensitizerâ€Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics (Small 45/2016). Small, 2016, 12, 6178-6178.	10.0	4
31	A "writing―strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures. Materials Horizons, 2016, 3, 581-587.	12.2	28
32	Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 11935-11938.	4.1	29
33	Glutathione Activatable Photosensitizerâ€Conjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. Small, 2016, 12, 6223-6232.	10.0	65
34	Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Science Advances, 2016, 2, e1600485.	10.3	31
35	GHz integrated acousto-optics., 2016,,.		1
36	Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor. ACS Applied Materials & Enterfaces, 2016, 8, 14357-14366.	8.0	38

#	Article	IF	CITATION
37	pH―and NIR Lightâ€Responsive Polymeric Prodrug Micelles for Hyperthermiaâ€Assisted Siteâ€Specific Chemotherapy to Reverse Drug Resistance in Cancer Treatment. Small, 2016, 12, 2731-2740.	10.0	102
38	Recyclable Colorimetric Detection of Trivalent Cations in Aqueous Media Using Zwitterionic Gold Nanoparticles. Analytical Chemistry, 2016, 88, 4140-4146.	6.5	43
39	Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band. Applied Physics Letters, 2015, 107, .	3.3	37
40	Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12  GHz. Optica, 2015, 2, 826.	9.3	72
41	Playing with a nanoscale see-saw. Nature Nanotechnology, 2014, 9, 948-948.	31.5	1
42	"Mixed-charge Self-Assembled Monolayers―as A Facile Method to Design pH-induced Aggregation of Large Gold Nanoparticles for Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18930-18937.	8.0	49
43	Optomechanical photon shuttling between photonic cavities. Nature Nanotechnology, 2014, 9, 913-919.	31.5	26
44	Enhanced optical forces in integrated hybrid plasmonic waveguides. Optics Express, 2013, 21, 11839.	3.4	41
45	Optical absorption in graphene integrated on silicon waveguides. Applied Physics Letters, 2012, 101, .	3.3	169
46	Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nature Communications, 2012, 3, 1091.	12.8	46