
Huan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6582144/publications.pdf Version: 2024-02-01

HUANLU

#	Article	IF	CITATIONS
1	Surface-Adaptive Cold Nanoparticles with Effective Adherence and Enhanced Photothermal Ablation of Methicillin-Resistant <i>Staphylococcus aureus</i> Biofilm. ACS Nano, 2017, 11, 9330-9339.	14.6	462
2	Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light: Science and Applications, 2021, 10, 123.	16.6	177
3	Optical absorption in graphene integrated on silicon waveguides. Applied Physics Letters, 2012, 101, .	3.3	169
4	Low-Loss Integrated Photonic Switch Using Subwavelength Patterned Phase Change Material. ACS Photonics, 2019, 6, 87-92.	6.6	124
5	pH―and NIR Lightâ€Responsive Polymeric Prodrug Micelles for Hyperthermiaâ€Assisted Siteâ€5pecific Chemotherapy to Reverse Drug Resistance in Cancer Treatment. Small, 2016, 12, 2731-2740.	10.0	102
6	Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12  GHz. Optica, 2015, 2, 826.	9.3	72
7	Design and Proof of Programmed 5-Aminolevulinic Acid Prodrug Nanocarriers for Targeted Photodynamic Cancer Therapy. ACS Applied Materials & Interfaces, 2017, 9, 14596-14605.	8.0	66
8	Glutathione Activatable Photosensitizer onjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics. Small, 2016, 12, 6223-6232.	10.0	65
9	Electromechanical Brillouin scattering in integrated optomechanical waveguides. Optica, 2019, 6, 778.	9.3	55
10	"Mixed-charge Self-Assembled Monolayers―as A Facile Method to Design pH-induced Aggregation of Large Gold Nanoparticles for Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Interfaces, 2014, 6, 18930-18937.	8.0	49
11	Multichannel cavity optomechanics for all-optical amplification of radio frequency signals. Nature Communications, 2012, 3, 1091.	12.8	46
12	Recyclable Colorimetric Detection of Trivalent Cations in Aqueous Media Using Zwitterionic Gold Nanoparticles. Analytical Chemistry, 2016, 88, 4140-4146.	6.5	43
13	Enhanced optical forces in integrated hybrid plasmonic waveguides. Optics Express, 2013, 21, 11839.	3.4	41
14	Hemoglobin as a Smart pH-Sensitive Nanocarrier To Achieve Aggregation Enhanced Tumor Retention. Biomacromolecules, 2018, 19, 2007-2013.	5.4	41
15	Zwitterionic stealth peptide-capped 5-aminolevulinic acid prodrug nanoparticles for targeted photodynamic therapy. Journal of Colloid and Interface Science, 2017, 485, 251-259.	9.4	40
16	Mach–Zehnder silicon-photonic switch with low random phase errors. Optics Letters, 2021, 46, 78.	3.3	40
17	Improved Endothelial Function of Endothelial Cell Monolayer on the Soft Polyelectrolyte Multilayer Film with Matrix-Bound Vascular Endothelial Growth Factor. ACS Applied Materials & Interfaces, 2016, 8, 14357-14366.	8.0	38
18	Acousto-optic modulation of a photonic crystal nanocavity with Lamb waves in microwave K band. Applied Physics Letters, 2015, 107, .	3.3	37

Huan Li

#	Article	IF	CITATIONS
19	Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices. Science Advances, 2016, 2, e1600485.	10.3	31
20	Compact electro-optic modulator on lithium niobate. Photonics Research, 2022, 10, 697.	7.0	31
21	Programmed photosensitizer conjugated supramolecular nanocarriers with dual targeting ability for enhanced photodynamic therapy. Chemical Communications, 2016, 52, 11935-11938.	4.1	29
22	A "writing―strategy for shape transition with infinitely adjustable shaping sequences and in situ tunable 3D structures. Materials Horizons, 2016, 3, 581-587.	12.2	28
23	Optomechanical photon shuttling between photonic cavities. Nature Nanotechnology, 2014, 9, 913-919.	31.5	26
24	Electromechanical Brillouin scattering in integrated planar photonics. APL Photonics, 2019, 4, .	5.7	24
25	Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light: Science and Applications, 2022, 11, .	16.6	24
26	Long-range transport of 2D excitons with acoustic waves. Nature Communications, 2022, 13, 1334.	12.8	23
27	Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency. Biomaterials Science, 2019, 7, 5177-5186.	5.4	21
28	mRNA Guided Intracellular Self-Assembly of DNA–Gold Nanoparticle Conjugates as a Precise Trigger to Up-Regulate Cell Apoptosis and Activate Photothermal Therapy. Bioconjugate Chemistry, 2019, 30, 1763-1772.	3.6	17
29	Subwavelength-Structure-Assisted Ultracompact Polarization-Handling Components on Silicon. Journal of Lightwave Technology, 2022, 40, 1784-1801.	4.6	12
30	Toward calibration-free Mach–Zehnder switches for next-generation silicon photonics. Photonics Research, 2022, 10, 793.	7.0	12
31	Direct Visualization of Cigahertz Acoustic Wave Propagation in Suspended Phononic Circuits. Physical Review Applied, 2021, 16, .	3.8	10
32	Low-Loss Calibration-Free 2 × 2 Mach-Zehnder Switches With Varied-Width Multimode-Interference Couplers. Journal of Lightwave Technology, 2022, 40, 5254-5259.	4.6	9
33	Separation of the valley exciton-polariton in two-dimensional semiconductors with an anisotropic photonic crystal. Physical Review B, 2020, 101, .	3.2	7
34	Mixedâ€charge bionanointerfaces: Opposite charges work in harmony to meet the challenges in biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1600.	6.1	5
35	Photodynamic Theranostics: Glutathione Activatable Photosensitizer onjugated Pseudopolyrotaxane Nanocarriers for Photodynamic Theranostics (Small 45/2016). Small, 2016, 12, 6178-6178.	10.0	4
36	Methemoglobin as a redox-responsive nanocarrier to trigger the in situ anticancer ability of artemisinin. NPG Asia Materials, 2017, 9, e423-e423.	7.9	4

Huan Li

#	Article	IF	CITATIONS
37	Dynamic Phonon Manipulation by Optomechanically Induced Strong Coupling between Two Distinct Mechanical Resonators. ACS Photonics, 2019, 6, 1855-1862.	6.6	4
38	Silicon nonlinear switch as a conditional circulator for monostatic LiDAR systems. Photonics Research, 2022, 10, 426.	7.0	3
39	Playing with a nanoscale see-saw. Nature Nanotechnology, 2014, 9, 948-948.	31.5	1
40	GHz integrated acousto-optics. , 2016, , .		1
41	Proposal for collinear integrated acousto-optic tunable filters featuring ultrawide tuning ranges and multi-band operations. Optics Express, 2022, 30, 24747.	3.4	1
42	Calibration-Free Mach-Zehnder Silicon-Photonic Switch. , 2021, , .		0
43	Integrated Two-Dimensional Free-Space Acousto-Optics on Suspended Membranes. , 2017, , .		0
44	On-chip Eletromechanically Induced Brillouin Scattering on Suspended Aluminum Nitride Waveguides. , 2017, , .		0
45	Calibration-Free 2 x2 Mach-Zehnder Switches with Ultralow-Loss MMI Couplers. , 2021, , .		0
46	Tunable Acousto-Optic Filter Based on Suspended Lithium Niobate Waveguides. , 2021, , .		0