
## Conny M A Van Ravenswaaij-Arts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6579752/publications.pdf

Version: 2024-02-01



Conny M A Van

| #  | Article                                                                                                                                                                                                                                 | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1  | Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biology, 2016, 17, 243.                                                                                            | 8.8             | 241          |
| 2  | Mutation update on the CHD7 gene involved in CHARGE syndrome. Human Mutation, 2012, 33, 1149-1160.                                                                                                                                      | 2.5             | 224          |
| 3  | <i>GRIN2A</i> -related disorders: genotype and functional consequence predict phenotype. Brain, 2019, 142, 80-92.                                                                                                                       | 7.6             | 143          |
| 4  | <i>SYNGAP1</i> encephalopathy. Neurology, 2019, 92, e96-e107.                                                                                                                                                                           | 1.1             | 131          |
| 5  | Recommendations for reporting results of diagnostic genetic testing (biochemical, cytogenetic and) Tj ETQq1 1                                                                                                                           | 0.784314<br>2.8 | rgBT/Over or |
| 6  | Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis. Nature Communications, 2019, 10, 2837.                                                        | 12.8            | 107          |
| 7  | De Novo Loss-of-Function Mutations in USP9X Cause a Female-Specific Recognizable Syndrome with Developmental Delay and Congenital Malformations. American Journal of Human Genetics, 2016, 98, 373-381.                                 | 6.2             | 95           |
| 8  | The phenotypic spectrum of Schaaf-Yang syndrome: 18 new affected individuals from 14 families.<br>Genetics in Medicine, 2017, 19, 45-52.                                                                                                | 2.4             | 94           |
| 9  | Molecular and clinical characterization of 25 individuals with exonic deletions of <i>NRXN1</i> and comprehensive review of the literature. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 388-403. | 1.7             | 93           |
| 10 | Towards a European consensus for reporting incidental findings during clinical NGS testing.<br>European Journal of Human Genetics, 2015, 23, 1601-1606.                                                                                 | 2.8             | 85           |
| 11 | Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a<br>Progeroid Form of Autosomal-Dominant Cutis Laxa. American Journal of Human Genetics, 2015, 97,<br>483-492.                          | 6.2             | 70           |
| 12 | The Results of <i>CHD7</i> Analysis in Clinically Well-Characterized Patients with Kallmann Syndrome.<br>Journal of Clinical Endocrinology and Metabolism, 2012, 97, E858-E862.                                                         | 3.6             | 69           |
| 13 | Haploinsufficiency of MeCP2-interacting transcriptional co-repressor SIN3A causes mild intellectual disability by affecting the development of cortical integrity. Nature Genetics, 2016, 48, 877-887.                                  | 21.4            | 67           |
| 14 | Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome. Trends in Genetics, 2015, 31, 600-611.                                                                                                                  | 6.7             | 66           |
| 15 | Whole-exome sequencing is a powerful approach for establishing the etiological diagnosis in patients with intellectual disability and microcephaly. BMC Medical Genomics, 2015, 9, 7.                                                   | 1.5             | 65           |
| 16 | The introduction of arrays in prenatal diagnosis: A special challenge. Human Mutation, 2012, 33, 923-929.                                                                                                                               | 2.5             | 63           |
| 17 | <i>MYT1L</i> is a candidate gene for intellectual disability in patients with 2p25.3 (2pter) deletions.<br>American Journal of Medical Genetics, Part A, 2011, 155, 2739-2745.                                                          | 1.2             | 53           |
| 18 | Haploinsufficiency of the STX1B gene is associated with myoclonic astatic epilepsy. European Journal of Paediatric Neurology, 2016, 20, 489-492.                                                                                        | 1.6             | 52           |

CONNY M A VAN

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome: a systematic and prospective study in 34 children. Journal of Neurodevelopmental Disorders, 2016, 8, 16.                                        | 3.1 | 51        |
| 20 | New insights and advances in CHARGE syndrome: Diagnosis, etiologies, treatments, and research<br>discoveries. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2017, 175,<br>397-406.        | 1.6 | 46        |
| 21 | Anosmia Predicts Hypogonadotropic Hypogonadism in CHARGE Syndrome. Journal of Pediatrics, 2011, 158, 474-479.                                                                                                           | 1.8 | 45        |
| 22 | CHARGE syndrome: a review of the immunological aspects. European Journal of Human Genetics, 2015, 23, 1451-1459.                                                                                                        | 2.8 | 44        |
| 23 | <i>CREBBP</i> mutations in individuals without Rubinstein–Taybi syndrome phenotype. American<br>Journal of Medical Genetics, Part A, 2016, 170, 2681-2693.                                                              | 1.2 | 43        |
| 24 | De Novo Truncating Mutations in WASF1 Cause Intellectual Disability with Seizures. American Journal of Human Genetics, 2018, 103, 144-153.                                                                              | 6.2 | 36        |
| 25 | Exon copy number alterations of the CHD7 gene are not a major cause of CHARGE and CHARGE-like syndrome. European Journal of Medical Genetics, 2008, 51, 417-425.                                                        | 1.3 | 33        |
| 26 | Haploinsufficiency for ANKRD11-flanking genes makes the difference between KBG and 16q24.3 microdeletion syndromes: 12 new cases. European Journal of Human Genetics, 2017, 25, 694-701.                                | 2.8 | 33        |
| 27 | Developing a CHARGE syndrome checklist: Health supervision across the lifespan (from head to toe).<br>American Journal of Medical Genetics, Part A, 2017, 173, 684-691.                                                 | 1.2 | 32        |
| 28 | Phelan-McDermid syndrome: a classification system after 30Âyears of experience. Orphanet Journal of<br>Rare Diseases, 2022, 17, 27.                                                                                     | 2.7 | 32        |
| 29 | The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports. European Journal of Human Genetics, 2018, 26, 1478-1489.                                     | 2.8 | 31        |
| 30 | Is there an effect of intranasal insulin on development and behaviour in Phelan-McDermid syndrome?<br>A randomized, double-blind, placebo-controlled trial. European Journal of Human Genetics, 2016, 24,<br>1696-1701. | 2.8 | 30        |
| 31 | Guidelines in CHARGE syndrome and the missing link: Cranial imaging. American Journal of Medical<br>Genetics, Part C: Seminars in Medical Genetics, 2017, 175, 450-464.                                                 | 1.6 | 29        |
| 32 | Immune Dysfunction in Children with CHARGE Syndrome: A Cross-Sectional Study. PLoS ONE, 2015, 10, e0142350.                                                                                                             | 2.5 | 27        |
| 33 | Neurodegenerative <i>VPS41</i> variants inhibit HOPS function and mTORC1â€dependent TFEB/TFE3 regulation. EMBO Molecular Medicine, 2021, 13, e13258.                                                                    | 6.9 | 26        |
| 34 | A novel homozygous insertion and review of published mutations in the NNT gene causing familial glucocorticoid deficiency (FGD). European Journal of Medical Genetics, 2015, 58, 642-649.                               | 1.3 | 24        |
| 35 | Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genetics in Medicine, 2021, 23, 1474-1483.                              | 2.4 | 24        |
| 36 | Sema3a plays a role in the pathogenesis of CHARGE syndrome. Human Molecular Genetics, 2018, 27, 1343-1352.                                                                                                              | 2.9 | 20        |

CONNY M A VAN

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | PRRT2-related phenotypes in patients with a 16p11.2 deletion. European Journal of Medical Genetics, 2019, 62, 265-269.                                                                                                | 1.3 | 20        |
| 38 | TAB2 deletions and variants cause a highly recognisable syndrome with mitral valve disease,<br>cardiomyopathy, short stature and hypermobility. European Journal of Human Genetics, 2021, 29,<br>1669-1676.           | 2.8 | 19        |
| 39 | Clinical utility gene card for: CHARGE syndrome - update 2015. European Journal of Human Genetics, 2015, 23, 3-4.                                                                                                     | 2.8 | 18        |
| 40 | Influence of hearing loss and cognitive abilities on language development in CHARGE Syndrome.<br>American Journal of Medical Genetics, Part A, 2016, 170, 2022-2030.                                                  | 1.2 | 14        |
| 41 | Congenital arch vessel anomalies in CHARGE syndrome: A frequent feature with risk for co-morbidity.<br>IJC Heart and Vasculature, 2016, 12, 21-25.                                                                    | 1.1 | 14        |
| 42 | Copy number variation in a hospitalâ€based cohort of children with epilepsy. Epilepsia Open, 2017, 2,<br>244-254.                                                                                                     | 2.4 | 13        |
| 43 | Suggestions for a Guideline for Cochlear Implantation in CHARGE Syndrome. Otology and Neurotology, 2016, 37, 1275-1283.                                                                                               | 1.3 | 12        |
| 44 | Duplication 2p25 in a child with clinical features of CHARGE syndrome. American Journal of Medical<br>Genetics, Part A, 2016, 170, 1148-1154.                                                                         | 1.2 | 11        |
| 45 | <i>CHD</i> 7 mutations are not a major cause of atrioventricular septal and conotruncal heart defects. American Journal of Medical Genetics, Part A, 2014, 164, 3003-3009.                                            | 1.2 | 10        |
| 46 | Imaging of Clival Hypoplasia in CHARGE Syndrome and Hypothesis for Development: A Case-Control<br>Study. American Journal of Neuroradiology, 2018, 39, 1938-1942.                                                     | 2.4 | 9         |
| 47 | A 649kb microduplication in 1p34.1, including POMGNT1, in a patient with microcephaly, coloboma and laryngomalacia; and a review of the literature. European Journal of Medical Genetics, 2009, 52, 116-119.          | 1.3 | 8         |
| 48 | Exome sequencing identifies the first genetic determinants of sirenomelia in humans. Human<br>Mutation, 2020, 41, 926-933.                                                                                            | 2.5 | 8         |
| 49 | Under-reported aspects of diagnosis and treatment addressed in the Dutch-Flemish guideline for comprehensive diagnostics in disorders/differences of sex development. Journal of Medical Genetics, 2020, 57, 581-589. | 3.2 | 8         |
| 50 | Cerebellar Vermis and Midbrain Hypoplasia Upon Conditional Deletion of Chd7 from the Embryonic<br>Mid-Hindbrain Region. Frontiers in Neuroanatomy, 2017, 11, 86.                                                      | 1.7 | 7         |
| 51 | Can Characteristics of Reciprocal Translocations Predict the Chance of Transferable Embryos in PGD<br>Cycles?. Journal of Clinical Medicine, 2014, 3, 348-358.                                                        | 2.4 | 6         |
| 52 | Central Adrenal Insufficiency Is Not a Common Feature in CHARGE Syndrome: A Cross-Sectional Study<br>in 2 Cohorts. Journal of Pediatrics, 2016, 176, 150-155.                                                         | 1.8 | 5         |
| 53 | Changes in empowerment and anxiety of patients and parents during genetic counselling for epilepsy.<br>European Journal of Paediatric Neurology, 2021, 32, 128-135.                                                   | 1.6 | 4         |
| 54 | <scp>EPHA7</scp> haploinsufficiency is associated with a neurodevelopmental disorder. Clinical<br>Genetics, 2021, 100, 396-404.                                                                                       | 2.0 | 3         |

CONNY M A VAN

| #  | Article                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Mechanism of Disease: Recessive ADAMTSL4 Mutations and Craniosynostosis with Ectopia Lentis. Case<br>Reports in Genetics, 2022, 2022, 1-8.                                | 0.2 | 3         |
| 56 | Reply to Sajantila and Budowle. European Journal of Human Genetics, 2016, 24, 330-330.                                                                                    | 2.8 | 1         |
| 57 | An analysis of body proportions in children with CHARGE syndrome using photogrammetric anthropometry. American Journal of Medical Genetics, Part A, 2019, 179, 1459-1465. | 1.2 | 1         |
| 58 | CHARGE syndrome and related disorders: a mechanistic link. Human Molecular Genetics, 2021, 30, 2215-2224.                                                                 | 2.9 | 1         |
| 59 | Support for the Diagnosis of CHARGE Syndrome. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 634.                                                                | 2.2 | 0         |