Stephen Bruce Powles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657966/publications.pdf

Version: 2024-02-01

113 papers 9,410 citations

45 h-index 93 g-index

113 all docs

113 docs citations

113 times ranked

4651 citing authors

#	Article	IF	CITATIONS
1	Targetâ€site resistance to trifluralin is more prevalent in annual ryegrass populations from Western Australia. Pest Management Science, 2022, 78, 1206-1212.	3.4	4
2	A dinitroaniline herbicide resistance mutation can be nearly lethal to plants. Pest Management Science, 2022, 78, 1547-1554.	3.4	2
3	A naturally evolved mutation (Ser59Gly) in glutamine synthetase confers glufosinate resistance in plants. Journal of Experimental Botany, 2022, 73, 2251-2262.	4.8	18
4	Exploring quinclorac resistance mechanisms in Echinochloa crusâ€pavonis from China. Pest Management Science, 2021, 77, 194-201.	3.4	13
5	Diversity of αâ€ŧubulin transcripts in Lolium rigidum. Pest Management Science, 2021, 77, 970-977.	3.4	4
6	Cytochrome P450 CYP81A10v7 in <i>Lolium rigidum</i> confers metabolic resistance to herbicides across at least five modes of action. Plant Journal, 2021, 105, 79-92.	5.7	93
7	Contrasting plant ecological benefits endowed by naturally occurring EPSPS resistance mutations under glyphosate selection. Evolutionary Applications, 2021, 14, 1635-1645.	3.1	4
8	Dinitroaniline Herbicide Resistance and Mechanisms in Weeds. Frontiers in Plant Science, 2021, 12, 634018.	3.6	17
9	An ABCC-type transporter endowing glyphosate resistance in plants. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	85
10	Plasma membrane receptor-like kinases and transporters are associated with 2,4-D resistance in wild radish. Annals of Botany, 2020, 125, 821-832.	2.9	9
11	Rotations and mixtures of soilâ€applied herbicides delay resistance. Pest Management Science, 2020, 76, 487-496.	3.4	65
12	A Valâ€202â€Phe αâ€ŧubulin mutation and enhanced metabolism confer dinitroaniline resistance in a single <i>Lolium rigidum</i> population. Pest Management Science, 2020, 76, 645-652.	3.4	20
13	Evolution of resistance to HPPDâ€inhibiting herbicides in a wild radish population via enhanced herbicide metabolism. Pest Management Science, 2020, 76, 1929-1937.	3.4	43
14	Nonâ€ŧargetâ€site resistance to PDSâ€inhibiting herbicides in a wild radish (<scp><i>Raphanus) Tj ETQq0 0 0 rg</i></scp>	gBT/Qverl	ock 10 Tf 50 2
15	Loss of trifluralin metabolic resistance in Lolium rigidum plants exposed to prosulfocarb recurrent selection. Pest Management Science, 2020, 76, 3926-3934.	3.4	4
16	Metribuzin resistance via enhanced metabolism in a multiple herbicide resistant <scp><i>Lolium rigidum </i></scp> population. Pest Management Science, 2020, 76, 3785-3791.	3.4	20
17	Cinmethylin controls multiple herbicideâ€resistant <i>Lolium rigidum</i> and its wheat selectivity is P450â€based. Pest Management Science, 2020, 76, 2601-2608.	3.4	28
18	Mechanistic basis for synergism of 2,4-D amine and metribuzin in <i>Avena sterilis</i> . Journal of Pesticide Sciences, 2020, 45, 216-222.	1.4	6

#	Article	IF	Citations
19	A novel <i>psbA</i> mutation (Phe274–Val) confers resistance to PSII herbicides in wild radish (<scp><i>Raphanus raphanistrum</i> </scp>). Pest Management Science, 2019, 75, 144-151.	3.4	27
20	No auxinic herbicide–resistance cost in wild radish (Raphanus raphanistrum). Weed Science, 2019, 67, 539-545.	1.5	3
21	Genetic inheritance of dinitroaniline resistance in an annual ryegrass population. Plant Science, 2019, 283, 189-194.	3.6	14
22	Do plants pay a fitness cost to be resistant to glyphosate?. New Phytologist, 2019, 223, 532-547.	7.3	55
23	Aldo-keto Reductase Metabolizes Glyphosate and Confers Glyphosate Resistance in <i>Echinochloa colona</i> . Plant Physiology, 2019, 181, 1519-1534.	4.8	97
24	Metribuzin Resistance in a Wild Radish (<i>Raphanus raphanistrum</i>) Population via Both <i>psbA</i> Gene Mutation and Enhanced Metabolism. Journal of Agricultural and Food Chemistry, 2019, 67, 1353-1359.	5.2	22
25	Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pesticide Biochemistry and Physiology, 2018, 148, 74-80.	3.6	45
26	iHSD Mill Efficacy on the Seeds of Australian Cropping System Weeds. Weed Technology, 2018, 32, 103-108.	0.9	20
27	Dinitroaniline herbicide resistance in a multipleâ€resistant <scp><i>Lolium rigidum</i></scp> population. Pest Management Science, 2018, 74, 925-932.	3.4	31
28	Modeling the Impact of Harvest Weed Seed Control on Herbicide-Resistance Evolution. Weed Science, 2018, 66, 395-403.	1.5	19
29	Novel α-Tubulin Mutations Conferring Resistance to Dinitroaniline Herbicides in Lolium rigidum. Frontiers in Plant Science, 2018, 9, 97.	3.6	46
30	Enhanced Trifluralin Metabolism Can Confer Resistance in <i>Lolium rigidum</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 7589-7596.	5.2	18
31	Glyphosate Resistance in <i>Tridax procumbens</i> via a Novel EPSPS Thr-102-Ser Substitution. Journal of Agricultural and Food Chemistry, 2018, 66, 7880-7888.	5.2	40
32	Influence of Crop Competition and Harvest Weed Seed Control on Rigid Ryegrass (<i>Lolium) Tj ETQq0 0 0 rgBT</i>	/Oygrlock	≀ 10 Jf 50 222
33	2,4-D and dicamba resistance mechanisms in wild radish: subtle, complex and population specific?. Annals of Botany, 2018, 122, 627-640.	2.9	22
34	Characterisation of glufosinate resistance mechanisms in <i>Eleusine indica</i> . Pest Management Science, 2017, 73, 1091-1100.	3 . 4	24
35	Inheritance of 2,4-D resistance traits in multiple herbicide- resistant Raphanus raphanistrum populations. Plant Science, 2017, 257, 1-8.	3.6	20

Recurrent Sublethal-Dose Selection for Reduced Susceptibility of Palmer Amaranth (<i > Amaranthus) Tj ETQq0 0 0 rg BT /Overlock 10 Tf 57 (Section 10 to 10

3

36

#	Article	IF	CITATIONS
37	Why was resistance to shorterâ€acting preâ€emergence herbicides slower to evolve?. Pest Management Science, 2017, 73, 844-851.	3.4	29
38	Harvest Weed Seed Control Systems are Similarly Effective on Rigid Ryegrass. Weed Technology, 2017, 31, 178-183.	0.9	31
39	High Levels of Adoption Indicate That Harvest Weed Seed Control Is Now an Established Weed Control Practice in Australian Cropping. Weed Technology, 2017, 31, 341-347.	0.9	61
40	PAM: Decision Support for Long-Term Palmer Amaranth (<i>Amaranthus palmeri</i>) Control. Weed Technology, 2017, 31, 915-927.	0.9	17
41	A double EPSPS gene mutation endowing glyphosate resistance shows a remarkably high resistance cost. Plant, Cell and Environment, 2017, 40, 3031-3042.	5.7	53
42	Can herbicide safeners allow selective control of weedy rice infesting rice crops?. Pest Management Science, 2017, 73, 71-77.	3.4	18
43	Phorate can reverse P450 metabolism-based herbicide resistance in <i>Lolium rigidum</i> . Pest Management Science, 2017, 73, 410-417.	3.4	57
44	Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in <i>Lolium rigidum</i> populations. Pest Management Science, 2016, 72, 255-263.	3.4	77
45	Crossâ€resistance to prosulfocarb + <i>S</i> à€metolachlor and pyroxasulfone selected by either herbicide in <i>Lolium rigidum</i> . Pest Management Science, 2016, 72, 1664-1672.	3.4	29
46	Response to low-dose herbicide selection in self-pollinated < i>Avena fatua < /i>. Pest Management Science, 2016, 72, 603-608.	3.4	29
47	Identification of Triazine-Resistant <i>Vulpia bromoides</i> <i i=""> Weed Technology, 2016, 30, 456-463.</i>	0.9	8
48	Exploring the Potential for a Regulatory Change to Encourage Diversity in Herbicide Use. Weed Science, 2016, 64, 649-654.	1.5	31
49	Glyphosate resistance in <i>Echinochloa colona</i> : phenotypic characterisation and quantification of selection intensity. Pest Management Science, 2016, 72, 67-73.	3.4	15
50	Integrating Herbicide Programs with Harvest Weed Seed Control and Other Fall Management Practices for the Control of Glyphosate-Resistant Palmer Amaranth (<i>Amaranthus palmeri</i>). Weed Science, 2016, 64, 540-550.	1.5	49
51	Recurrent selection with reduced 2,4â€D amine doses results in the rapid evolution of 2,4â€D herbicide resistance in wild radish (<i>Raphanus raphanistrum</i> L.). Pest Management Science, 2016, 72, 2091-2098.	3.4	28
52	Target-site EPSPS Pro-106 mutations: sufficient to endow glyphosate resistance in polyploid <i>Echinochloa colona</i> ?. Pest Management Science, 2016, 72, 264-271.	3.4	35
53	2,4-D resistance in wild radish: reduced herbicide translocation via inhibition of cellular transport. Journal of Experimental Botany, 2016, 67, 3223-3235.	4.8	92
54	Intensive cropping systems select for greater seed dormancy and increased herbicide resistance levels in <i>Lolium rigidum</i> (annual ryegrass). Pest Management Science, 2015, 71, 966-971.	3.4	28

#	Article	IF	Citations
55	A potential role for endogenous microflora in dormancy release, cytokinin metabolism and the response to fluridone in Lolium rigidum seeds. Annals of Botany, 2015, 115, 293-301.	2.9	62
56	Effect of herbicide resistance endowing Ile-1781-Leu and Asp-2078-Gly <i>ACCase</i> gene mutations on ACCase kinetics and growth traits in <i>Lolium rigidum</i> Journal of Experimental Botany, 2015, 66, 4711-4718.	4.8	46
57	Evolution of a Double Amino Acid Substitution in the 5-Enolpyruvylshikimate-3-Phosphate Synthase in <i>Eleusine indica</i> Conferring High-Level Glyphosate Resistance. Plant Physiology, 2015, 167, 1440-1447.	4.8	197
58	RIM: Anatomy of a Weed Management Decision Support System for Adaptation and Wider Application. Weed Science, 2015, 63, 676-689.	1.5	17
59	Upgrading the RIM Model for Improved Support of Integrated Weed Management Extension Efforts in Cropping Systems. Weed Technology, 2014, 28, 703-720.	0.9	19
60	Global Herbicide Resistance Challenge. Pest Management Science, 2014, 70, 1305-1305.	3.4	26
61	No fitness cost of glyphosate resistance endowed by massive EPSPS gene amplification in Amaranthus palmeri. Planta, 2014, 239, 793-801.	3.2	97
62	Metabolism-Based Herbicide Resistance and Cross-Resistance in Crop Weeds: A Threat to Herbicide Sustainability and Global Crop Production. Plant Physiology, 2014, 166, 1106-1118.	4.8	366
63	«scp»RNA«/scp»â€Seq transcriptome analysis to identify genes involved in metabolismâ€based diclofop resistance in «i»Lolium rigidum«/i». Plant Journal, 2014, 78, 865-876.	5.7	185
64	High Seed Retention at Maturity of Annual Weeds Infesting Crop Fields Highlights the Potential for Harvest Weed Seed Control. Weed Technology, 2014, 28, 486-493.	0.9	88
65	Inheritance of evolved resistance to a novel herbicide (pyroxasulfone). Plant Science, 2014, 217-218, 127-134.	3.6	36
66	Herbicideâ€resistant weeds: from research and knowledge to future needs. Evolutionary Applications, 2013, 6, 1218-1221.	3.1	108
67	Herbicide Resistance Endowed by Enhanced Rates of Herbicide Metabolism in Wild Oat (<i>Avena</i> spp.). Weed Science, 2013, 61, 55-62.	1.5	35
68	Targeting Weed Seeds In-Crop: A New Weed Control Paradigm for Global Agriculture. Weed Technology, 2013, 27, 431-436.	0.9	205
69	Identification of Genetic Elements Associated with EPSPS Gene Amplification. PLoS ONE, 2013, 8, e65819.	2.5	44
70	ACCase-Inhibiting Herbicide-Resistant <i>Avena</i> Populations from the Western Australian Grain Belt. Weed Technology, 2012, 26, 130-136.	0.9	23
71	Synergistic Effects of Atrazine and Mesotrione on Susceptible and Resistant Wild Radish (Raphanus) Tj ETQq1 1 Technology, 2012, 26, 341-347.	0.784314 0.9	rgBT Overlo
72	Evolved Resistance to Glyphosate in Junglerice (<i>Echinochloa colona</i>) from the Tropical Ord River Region in Australia. Weed Technology, 2012, 26, 480-484.	0.9	36

#	Article	IF	CITATIONS
73	An Herbicide-Susceptible Rigid Ryegrass (<i>Lolium rigidum</i>) Population Made Even More Susceptible. Weed Science, 2012, 60, 101-105.	1.5	12
74	Harrington Seed Destructor: A New Nonchemical Weed Control Tool for Global Grain Crops. Crop Science, 2012, 52, 1343-1347.	1.8	111
75	Understanding Lolium rigidum Seeds: The Key to Managing a Problem Weed?. Agronomy, 2012, 2, 222-239.	3.0	30
76	Glyphosate resistance in perennial <i>Sorghum halepense</i> (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake. Pest Management Science, 2012, 68, 430-436.	3.4	96
77	Rapid Evolution of Herbicide Resistance by Low Herbicide Dosages. Weed Science, 2011, 59, 210-217.	1.5	136
78	Reduced sensitivity to paraquat evolves under selection with low glyphosate doses in Lolium rigidum. Agronomy for Sustainable Development, 2011, 31, 525-531.	5.3	21
79	The Potential for Pyroxasulfone to Selectively Control Resistant and Susceptible Rigid Ryegrass (<i>Lolium rigidum</i>) Biotypes in Australian Grain Crop Production Systems. Weed Technology, 2011, 25, 30-37.	0.9	54
80	Evolution in Action: Plants Resistant to Herbicides. Annual Review of Plant Biology, 2010, 61, 317-347.	18.7	1,301
81	Gene amplification delivers glyphosate-resistant weed evolution. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 955-956.	7.1	53
82	Glyphosate-Resistant Rigid Ryegrass (Lolium rigidum) Populations in the Western Australian Grain Belt. Weed Technology, 2010, 24, 44-49.	0.9	26
83	AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. Journal of Experimental Botany, 2010, 61, 3925-3934.	4.8	186
84	A Survey in the Southern Grain Belt of Western Australia Did Not Find <i>Conyza</i> Spp. Resistant to Glyphosate. Weed Technology, 2009, 23, 492-494.	0.9	9
85	Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta, 2009, 230, 713-723.	3.2	139
86	Evidence for an ecological cost of enhanced herbicide metabolism in <i>Lolium rigidum</i> . Journal of Ecology, 2009, 97, 772-780.	4.0	58
87	Fitness costs associated with evolved herbicide resistance alleles in plants. New Phytologist, 2009, 184, 751-767.	7.3	295
88	Herbicide Resistance in Rigid Ryegrass (Lolium rigidum) Has Not Led to Higher Weed Densities in Western Australian Cropping Fields. Weed Science, 2009, 57, 61-65.	1.5	23
89	Glyphosate: a onceâ€inâ€aâ€century herbicide. Pest Management Science, 2008, 64, 319-325.	3.4	1,253
90	Evolved glyphosateâ€resistant weeds around the world: lessons to be learnt. Pest Management Science, 2008, 64, 360-365.	3.4	373

#	Article	IF	CITATIONS
91	Mutations of the ALS gene endowing resistance to ALSâ€inhibiting herbicides in <i>Lolium rigidum</i> populations. Pest Management Science, 2008, 64, 1229-1236.	3.4	134
92	Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (<i>Lolium rigidum</i>) seeds. New Phytologist, 2008, 180, 81-89.	7.3	38
93	Evolution of Glyphosate-Resistant Johnsongrass (<i>Sorghum halepense</i>) in Glyphosate-Resistant Soybean. Weed Science, 2007, 55, 566-571.	1.5	71
94	Physiological and Molecular Characterization of Atrazine Resistance in a Wild Radish (<i>Raphanus) Tj ETQq0 0</i>	0 rgBJ /Ον	verlock 10 Tf 5
95	Chlamydomonas reinhardtii as a model system for pro-active herbicide resistance evolution research. Biological Journal of the Linnean Society, 2007, 91, 257-266.	1.6	36
96	Herbicide resistance and the adoption of integrated weed management by Western Australian grain growers. Agricultural Economics (United Kingdom), 2007, 36, 123-130.	3.9	46
97	Evolved Glyphosate Resistance in Plants: Biochemical and Genetic Basis of Resistance. Weed Technology, 2006, 20, 282-289.	0.9	202
98	Glyphosate, paraquat and ACCase multiple herbicide resistance evolved in a Lolium rigidum biotype. Planta, 2006, 225, 499-513.	3.2	183
99	Resistance to ACCase-inhibiting herbicides in sprangletop (Leptochloa chinensis). Weed Science, 2005, 53, 290-295.	1.5	24
100	Potential for Preseason Herbicide Application to Prevent Weed Emergence in the Subsequent Growing Season. 1. Identification and Evaluation of Possible Herbicides. Weed Technology, 2004, 18, 228-235.	0.9	4
101	Multiple-herbicide resistance across four modes of action in wild radish (Raphanus raphanistrum). Weed Science, 2004, 52, 8-13.	1.5	98
102	Multiple herbicide resistance in a glyphosate-resistant rigid ryegrass (Lolium rigidum) population. Weed Science, 2004, 52, 920-928.	1.5	55
103	Paraquat resistance in a population of Lolium rigidum. Functional Plant Biology, 2004, 31, 247.	2.1	38
104	My view. Weed Science, 2003, 51, 471-471.	1.5	10
105	Effect of malathion on resistance to soil-applied herbicides in a population of rigid ryegrass (<i>Lolium rigidum</i>). Weed Science, 1999, 47, 258-261.	1.5	40
106	Resistance to glyphosate inLolium rigidum. Pest Management Science, 1999, 55, 489-491.	0.4	37
107	Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientaleand Brassica tournefortii. Pest Management Science, 1999, 55, 507-516.	0.4	104
108	Multiple Resistance to Dissimilar Herbicide Chemistries in a Biotype ofLolium rigidumDue to Enhanced Activity of Several Herbicide Degrading Enzymes. Pesticide Biochemistry and Physiology, 1996, 54, 123-134.	3.6	195

#	Article	IF	CITATIONS
109	Dintroaniline Herbicide Resistance in Rigid Ryegrass (Lolium rigidum). Weed Science, 1995, 43, 55-62.	1.5	64
110	Herbicide multiple-resistance in a Lolium rigidum biotype is endowed by multiple mechanisms: isolation of a subset with resistant acetyl-CoA carboxylase. Physiologia Plantarum, 1994, 91, 488-494.	5.2	110
111	Resistance to Acetolactate Synthase-Inhibiting Herbicides in Annual Ryegrass (<i>Lolium rigidum</i> Involves at Least Two Mechanisms. Plant Physiology, 1992, 100, 1909-1913.	4.8	148
112	Cross-Resistance to Herbicides in Annual Ryegrass (Lolium rigidum). Plant Physiology, 1991, 97, 1026-1034.	4.8	78
113	Cross-Resistance to Herbicides in Annual Ryegrass (<i>Lolium rigidum</i>). Plant Physiology, 1991, 95, 1036-1043.	4.8	163