Stephan Hofmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657946/publications.pdf

Version: 2024-02-01

279 papers 16,169 citations

68 h-index 19749 117 g-index

285 all docs 285 docs citations

times ranked

285

18944 citing authors

#	Article	IF	CITATIONS
1	Evidence of synergistic electrocatalysis at a cobalt oxide–graphene interface through nanochemical mapping of scanning transmission X-ray microscopy. Chinese Journal of Physics, 2022, 76, 135-144.	3.9	3
2	Empirical Parameter to Compare Molecule–Electrode Interfaces in Large-Area Molecular Junctions. ACS Physical Chemistry Au, 2022, 2, 179-190.	4.0	8
3	Giant Magnetoresistance in a Chemical Vapor Deposition Graphene Constriction. ACS Nano, 2022, , .	14.6	O
4	Realization of electronic grade graphene and h-BN. , 2022, , 119-157.		0
5	Terahertz Metamaterial Optoelectronic Modulators With GHz Reconfiguration Speed. IEEE Transactions on Terahertz Science and Technology, 2022, 12, 520-526.	3.1	13
6	Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene-superconductor Coupled Split-ring Resonator Arrays., 2022,,.		1
7	Tracking interfacial changes of graphene/Ge(1 1 0) during in-vacuum annealing. Applied Surface Science, 2022, 602, 154291.	6.1	2
8	Lateral Extensions to Nanowires for Controlling Nickel Silicidation Kinetics: Improving Contact Uniformity of Nanoelectronic Devices. ACS Applied Nano Materials, 2021, 4, 4371-4378.	5.0	9
9	Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano, 2021, 15, 8780-8789.	14.6	52
10	Growth and Characterisation Studies of Eu3O4 Thin Films Grown on Si/SiO2 and Graphene. Nanomaterials, 2021, 11, 1598.	4.1	3
11	Plasmaâ€Enhanced Atomic Layer Deposition of Al ₂ O ₃ on Graphene Using Monolayer hBN as Interfacial Layer. Advanced Materials Technologies, 2021, 6, 2100489.	5.8	7
12	High-yield parallel fabrication of quantum-dot monolayer single-electron devices displaying Coulomb staircase, contacted by graphene. Nature Communications, 2021, 12, 4307.	12.8	2
13	Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials. Advanced Science, 2021, 8, e2100864.	11.2	259
14	Quantum Emitter Localization in Layer-Engineered Hexagonal Boron Nitride. ACS Nano, 2021, 15, 13591-13603.	14.6	27
15	Surface Electron-Hole Rich Species Active in the Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2021, 143, 12524-12534.	13.7	62
16	Giant photoluminescence enhancement in MoSe ₂ monolayers treated with oleic acid ligands. Nanoscale Advances, 2021, 3, 4216-4225.	4.6	14
17	Graphene-based External Optoelectronic Terahertz Modulators for High Speed Wireless Communications. , 2021, , .		2
18	Active Terahertz Modulator and Slow Light Metamaterial Devices with Hybrid Graphene–Superconductor Photonic Integrated Circuits. Nanomaterials, 2021, 11, 2999.	4.1	19

#	Article	IF	CITATIONS
19	A highly stable, nanotube-enhanced, CMOS-MEMS thermal emitter for mid-IR gas sensing. Scientific Reports, 2021, 11, 22915.	3.3	11
20	Nanoparticle Dynamics in Oxideâ€Based Memristive Devices. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900587.	1.8	3
21	Oxidising and carburising catalyst conditioning for the controlled growth and transfer of large crystal monolayer hexagonal boron nitride. 2D Materials, 2020, 7, 024005.	4.4	13
22	Tunable Anion-Selective Transport through Monolayer Graphene and Hexagonal Boron Nitride. ACS Nano, 2020, 14, 2729-2738.	14.6	36
23	Active metamaterial polarization modulators for the Terahertz frequency range. Journal of Physics: Conference Series, 2020, 1571, 012003.	0.4	1
24	Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene. ACS Nano, 2020, 14, 13593-13601.	14.6	23
25	Catalytically mediated epitaxy of 3D semiconductors on van der Waals substrates. Applied Physics Reviews, 2020, 7, .	11.3	15
26	Understanding metal organic chemical vapour deposition of monolayer WS ₂ : the enhancing role of Au substrate for simple organosulfur precursors. Nanoscale, 2020, 12, 22234-22244.	5.6	13
27	Mechanical properties of the hollow-wall graphene gyroid lattice. Acta Materialia, 2020, 201, 254-265.	7.9	10
28	High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures. ACS Nano, 2020, 14, 15293-15305.	14.6	5
29	Crystal Orientation Dependent Oxidation Modes at the Buried Graphene–Cu Interface. Chemistry of Materials, 2020, 32, 7766-7776.	6.7	19
30	A Terahertz Chiral Metamaterial Modulator. Advanced Optical Materials, 2020, 8, 2000581.	7.3	46
31	External cavity terahertz quantum cascade laser with a metamaterial/graphene optoelectronic mirror. Applied Physics Letters, 2020, 117, .	3.3	13
32	Long-Range Propagation and Interference of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:math> -wave Superconducting Pairs in Graphene. Physical Review Letters, 2020, 125, 087002.	7.8	12
33	Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nature Communications, 2020, 11, 5670.	12.8	37
34	Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devices. Applied Physics Letters, 2020, 116 , .	3.3	3
35	Localized Nanoresonator Mode in Plasmonic Microcavities. Physical Review Letters, 2020, 124, 093901.	7.8	8
36	Through-substrate terahertz time-domain reflection spectroscopy for environmental graphene conductivity mapping. Applied Physics Letters, 2020, 116, .	3.3	19

#	Article	IF	CITATIONS
37	Ordered graphitic microfoams via shrinkage and catalytic conversion of polymer scaffolds. APL Materials, 2020, 8, 021106.	5.1	4
38	Double Layer Active Terahertz Chiral Metamaterial/graphene Modulators., 2020,,.		0
39	Environmental graphene conductivity sensing using terahertz time-domain reflection spectroscopy. , 2020, , .		0
40	Enhancing Photoluminescence and Mobilities in WS ₂ Monolayers with Oleic Acid Ligands. Nano Letters, 2019, 19, 6299-6307.	9.1	80
41	Reactive intercalation and oxidation at the buried graphene-germanium interface. APL Materials, 2019, 7, .	5.1	16
42	High-Mobility, Wet-Transferred Graphene Grown by Chemical Vapor Deposition. ACS Nano, 2019, 13, 8926-8935.	14.6	132
43	In situ TEM Approaches to Controlling the Growth of Semiconductors on 2D Materials. Microscopy and Microanalysis, 2019, 25, 1424-1425.	0.4	0
44	Terahertz Polarisation Modulator by Electronic Control of Graphene Loaded Chiral Metamaterial Device. , 2019, , .		0
45	Waveguide-Based Platform for Large-FOV Imaging of Optically Active Defects in 2D Materials. ACS Photonics, 2019, 6, 3100-3107.	6.6	11
46	Single-nanowire spectrometers. Science, 2019, 365, 1017-1020.	12.6	291
46	Single-nanowire spectrometers. Science, 2019, 365, 1017-1020. Metamaterial/graphene active terahertz modulators., 2019,,.	12.6	291
		12.6	
47	Metamaterial/graphene active terahertz modulators. , 2019, , . Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz		1
47	Metamaterial/graphene active terahertz modulators., 2019,,. Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers. ACS Photonics, 2019, 6, 1547-1555. The Role and Control of Residual Bulk Oxygen in the Catalytic Growth of 2D Materials. Journal of	6.6	1 45
48	Metamaterial/graphene active terahertz modulators., 2019,,. Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers. ACS Photonics, 2019, 6, 1547-1555. The Role and Control of Residual Bulk Oxygen in the Catalytic Growth of 2D Materials. Journal of Physical Chemistry C, 2019, 123, 16257-16267. Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride.	6.6 3.1	1 45 21
47 48 49 50	Metamaterial/graphene active terahertz modulators., 2019,,. Graphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers. ACS Photonics, 2019, 6, 1547-1555. The Role and Control of Residual Bulk Oxygen in the Catalytic Growth of 2D Materials. Journal of Physical Chemistry C, 2019, 123, 16257-16267. Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride. Nano Letters, 2019, 19, 2516-2523. Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal	6.6 3.1 9.1	1 45 21 63
47 48 49 50	Metamaterial/graphene active terahertz modulators., 2019,,. Craphene-Integrated Metamaterial Device for All-Electrical Polarization Control of Terahertz Quantum Cascade Lasers. ACS Photonics, 2019, 6, 1547-1555. The Role and Control of Residual Bulk Oxygen in the Catalytic Growth of 2D Materials. Journal of Physical Chemistry C, 2019, 123, 16257-16267. Wide-Field Spectral Super-Resolution Mapping of Optically Active Defects in Hexagonal Boron Nitride. Nano Letters, 2019, 19, 2516-2523. Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitride. ACS Nano, 2019, 13, 4538-4547. Correlative Fluorescence and Electron Microscopy of Graphene-Enclosed Whole Cells for High	6.6 3.1 9.1 14.6	1 45 21 63 47

#	Article	IF	CITATIONS
55	Electrochemically active Ir NPs on graphene for OER in acidic aqueous electrolyte investigated by in situ and ex situ spectroscopies. Surface Science, 2019, 681, 1-8.	1.9	33
56	A Peeling Approach for Integrated Manufacturing of Large Monolayer h-BN Crystals. ACS Nano, 2019, 13, 2114-2126.	14.6	35
57	Surface Crystallization of Liquid Au–Si and Its Impact on Catalysis. Advanced Materials, 2019, 31, 1806544.	21.0	23
58	Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. ACS Nano, 2018, 12, 4712-4718.	14.6	88
59	Imaging of Optically Active Defects with Nanometer Resolution. Nano Letters, 2018, 18, 1739-1744.	9.1	61
60	Dirac-Point Shift by Carrier Injection Barrier in Graphene Field-Effect Transistor Operation at Room Temperature. ACS Applied Materials & Interfaces, 2018, 10, 10618-10621.	8.0	5
61	Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene. Nature Physics, 2018, 14, 25-29.	16.7	39
62	Graphene Conductivity Mapping using Terahertz Time-Domain Reflection Spectroscopy. , 2018, , .		0
63	The Role of Adsorbed and Subsurface Carbon Species for the Selective Alkyne Hydrogenation Over a Pd-Black Catalyst: An Operando Study of Bulk and Surface. Topics in Catalysis, 2018, 61, 2052-2061.	2.8	23
64	Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano, 2018, 12, 11756-11784.	14.6	388
65	Active Frequency Modulation of Metamaterial/Graphene Optoelectronic Device Using Coupled Resonators. , 2018, , .		0
66	Amplitude stabilization and active control of a terahertz quantum cascade laser with a graphene loaded split-ring-resonator array. Applied Physics Letters, 2018, 112, .	3.3	12
67	Measuring the thermal properties of anisotropic materials using beam-offset frequency domain thermoreflectance. Journal of Applied Physics, 2018, 123, .	2.5	18
68	Fast, Noncontact, Wafer-Scale, Atomic Layer Resolved Imaging of Two-Dimensional Materials by Ellipsometric Contrast Micrography. ACS Nano, 2018, 12, 8555-8563.	14.6	31
69	Nondestructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayer. ACS Applied Materials & Down to a Monolayer.	8.0	17
70	Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors. ACS Omega, 2018, 3, 9246-9255.	3.5	21
71	Compressive behavior and failure mechanisms of freestanding and composite 3D graphitic foams. Acta Materialia, 2018, 159, 187-196.	7.9	10
72	Active Control of Electromagnetically Induced Transparency in a Terahertz Metamaterial Array with Graphene for Continuous Resonance Frequency Tuning. Advanced Optical Materials, 2018, 6, 1800570.	7. 3	85

#	Article	IF	Citations
73	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie, 2018, 130, 10755-10759.	2.0	16
74	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie - International Edition, 2018, 57, 10595-10599.	13.8	93
75	Metamaterial/graphene amplitude and frequency modulators for the active control of terahertz quantum cascade lasers. , 2018, , .		0
76	Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions. Applied Physics Letters, 2017, 110, .	3.3	9
77	Extrinsic Cation Selectivity of 2D Membranes. ACS Nano, 2017, 11, 1340-1346.	14.6	105
78	Raman spectral indicators of catalyst decoupling for transfer of CVD grown 2D materials. Carbon, 2017, 117, 75-81.	10.3	33
79	Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films. ACS Nano, 2017, 11, 4521-4527.	14.6	35
80	Encapsulation of graphene transistors and vertical device integration by interface engineering with atomic layer deposited oxide. 2D Materials, 2017, 4, 011008.	4.4	39
81	Geometrical Effect in 2D Nanopores. Nano Letters, 2017, 17, 4223-4230.	9.1	87
82	Bolometric detection of terahertz quantum cascade laser radiation with graphene-plasmonic antenna arrays. Journal Physics D: Applied Physics, 2017, 50, 174001.	2.8	22
83	Graphene-based nanolaminates as ultra-high permeation barriers. Npj 2D Materials and Applications, 2017, 1, .	7.9	21
84	Graphene Liquid Enclosure for Single-Molecule Analysis of Membrane Proteins in Whole Cells Using Electron Microscopy. ACS Nano, 2017, 11, 11108-11117.	14.6	59
85	Preface for a special issue on 2D materials: growth, characterisation, properties and devices. Journal Physics D: Applied Physics, 2017, 50, 440401.	2.8	1
86	External amplitude and frequency modulation of a terahertz quantum cascade laser using metamaterial/graphene devices. Scientific Reports, 2017, 7, 7657.	3.3	27
87	Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology, 2017, 28, 485201.	2.6	18
88	Terahertz Nanoscopy of Plasmonic Resonances with a Quantum Cascade Laser. ACS Photonics, 2017, 4, 2150-2157.	6.6	44
89	Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy. Scientific Reports, 2017, 7, 10625.	3.3	35
90	From Growth Surface to Device Interface: Preserving Metallic Fe under Monolayer Hexagonal Boron Nitride. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29973-29981.	8.0	16

#	Article	IF	Citations
91	Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires. ACS Applied Materials & Engineering the Photoresponse of InAs Nanowires & Engineering t	8.0	49
92	Embedded nanoparticle dynamics and their influence on switching behaviour of resistive memory devices. Nanoscale, 2017, 9, 17494-17504.	5.6	15
93	Mechanisms of titania nanoparticle mediated growth of turbostratic carbon nanotubes and nanofibers. Journal of Applied Physics, 2017, 122, 014301.	2.5	4
94	Mechanical characterization and cleaning of CVD single-layer h-BN resonators. Npj 2D Materials and Applications, 2017, 1 , .	7.9	40
95	Graphene Enclosure Facilitates Single-Molecule Analysis of ErbB2 Receptors in Intact, Hydrated Eukaryotic Cells by Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 1304-1305.	0.4	0
96	Chemical vapour deposition of freestanding sub-60 nm graphene gyroids. Applied Physics Letters, 2017, 111, .	3.3	18
97	Robust mapping of electrical properties of graphene from terahertz time-domain spectroscopy with timing jitter correction. Optics Express, 2017, 25, 2725.	3.4	32
98	100% Amplitude modulation of an external cavity terahertz QCL using an optoelectronic chopper based on metamaterials and graphene. , 2017, , .		1
99	Tunable Photoresponse in InAs Nanowire Photodetectors Through Surface-State Engineering. , 2017, , .		1
100	Optoelectronic Control of an External Cavity Quantum Cascade Laser Using a Graphene Loaded Metamaterial Array. , 2017, , .		0
101	Electron Microscopy of Single Cells in Liquid for Stoichiometric Analysis of Transmembrane Proteins. Microscopy and Microanalysis, 2016, 22, 74-75.	0.4	2
102	Towards a Graphene-Based Low Intensity Photon Counting Photodetector. Sensors, 2016, 16, 1351.	3.8	3
103	Magnetic tunnel junctions with monolayer hexagonal boron nitride tunnel barriers. Applied Physics Letters, 2016, 108, .	3.3	118
104	Atmospheric pressure X-ray photoelectron spectroscopy apparatus: Bridging the pressure gap. Review of Scientific Instruments, 2016, 87, 053121.	1.3	76
105	Graphene based plasmonic terahertz amplitude modulator operating above 100 MHz. Applied Physics Letters, 2016, 108, .	3.3	83
106	Stabilizing a graphene platform toward discrete components. Applied Physics Letters, 2016, 109, 253110.	3.3	16
107	Nanoscale Plasmonâ€Enhanced Spectroscopy in Memristive Switches. Small, 2016, 12, 1334-1341.	10.0	57
108	Thirty Gigahertz Optoelectronic Mixing in Chemical Vapor Deposited Graphene. Nano Letters, 2016, 16, 2988-2993.	9.1	26

#	Article	IF	Citations
109	Fast terahertz optoelectronic amplitude modulator based on plasmonic metamaterial antenna arrays and graphene. Proceedings of SPIE, 2016, , .	0.8	2
110	In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 22571-22584.	3.1	80
111	Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 30564-30575.	8.0	47
112	Fast Room-Temperature Detection of Terahertz Quantum Cascade Lasers with Graphene-Loaded Bow-Tie Plasmonic Antenna Arrays. ACS Photonics, 2016, 3, 1747-1753.	6.6	42
113	In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils. Nano Letters, 2016, 16, 6196-6206.	9.1	62
114	Electronic properties of CVD graphene: The role of grain boundaries, atmospheric doping, and encapsulation by ALD. Physica Status Solidi (B): Basic Research, 2016, 253, 2321-2325.	1.5	17
115	Understanding and Controlling Cu-Catalyzed Graphene Nucleation: The Role of Impurities, Roughness, and Oxygen Scavenging. Chemistry of Materials, 2016, 28, 8905-8915.	6.7	128
116	Measuring the nonlinear refractive index of graphene using the optical Kerr effect method. Optics Letters, 2016, 41, 3281.	3.3	92
117	Catalyst Interface Engineering for Improved 2D Film Lift-Off and Transfer. ACS Applied Materials & Catalyst Interfaces, 2016, 8, 33072-33082.	8.0	40
118	Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nature Communications, 2016, 7, 12373.	12.8	81
119	Controlling nanowire growth through electric field-induced deformation of the catalyst droplet. Nature Communications, 2016, 7, 12271.	12.8	49
120	Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure. Journal of Physical Chemistry C, 2016, 120, 2215-2224.	3.1	108
121	Controlling Catalyst Bulk Reservoir Effects for Monolayer Hexagonal Boron Nitride CVD. Nano Letters, 2016, 16, 1250-1261.	9.1	114
122	Interface dynamics and crystal phase switching in GaAs nanowires. Nature, 2016, 531, 317-322.	27.8	272
123	Fast Modulation of Terahertz Quantum Cascade Lasers Using Graphene Loaded Plasmonic Antennas. ACS Photonics, 2016, 3, 464-470.	6.6	37
124	Low-bias gate tunable terahertz plasmonic signatures in chemical vapour deposited graphene of varying grain size. Proceedings of SPIE, 2016 , , .	0.8	0
125	Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale, 2016, 8, 2149-2158.	5.6	114
126	Understanding Capacitance Variation in Sub-nanometer Pores by <i>iin Situ</i> ii> Tuning of Interlayer Constrictions. ACS Nano, 2016, 10, 747-754.	14.6	64

#	Article	IF	Citations
127	Measuring the proton selectivity of graphene membranes. Applied Physics Letters, 2015, 107, .	3.3	56
128	Building and Imaging Silicide Nanostructures in Nanowires. Microscopy and Microanalysis, 2015, 21, 1505-1506.	0.4	0
129	Nucleation Control for Large, Single Crystalline Domains of Monolayer Hexagonal Boron Nitride via Si-Doped Fe Catalysts. Nano Letters, 2015, 15, 1867-1875.	9.1	139
130	Influence of Packing Density and Surface Roughness of Vertically-Aligned Carbon Nanotubes on Adhesive Properties of Gecko-Inspired Mimetics. ACS Applied Materials & Interfaces, 2015, 7, 3626-3632.	8.0	33
131	Engineered pixels using active plasmonic holograms with liquid crystals. Physica Status Solidi - Rapid Research Letters, 2015, 9, 125-129.	2.4	13
132	Free-standing graphene membranes on glass nanopores for ionic current measurements. Applied Physics Letters, 2015, 106, .	3.3	45
133	Graphene-Based Ultrathin Flat Lenses. ACS Photonics, 2015, 2, 200-207.	6.6	70
134	Multifunctional oxides for integrated manufacturing of efficient graphene electrodes for organic electronics. Applied Physics Letters, 2015, 106, .	3.3	19
135	Hybrid graphene nematic liquid crystal light scattering device. Nanoscale, 2015, 7, 14114-14120.	5.6	12
136	Engineering high charge transfer n-doping of graphene electrodes and its application to organic electronics. Nanoscale, 2015, 7, 13135-13142.	5.6	43
137	Graphene and chiral nematic liquid crystals: a focus on lasing. RSC Advances, 2015, 5, 57437-57443.	3.6	6
138	Synthesis of nanostructures in nanowires using sequential catalyst reactions. Nature Materials, 2015, 14, 820-825.	27.5	82
139	CVD-Enabled Graphene Manufacture and Technology. Journal of Physical Chemistry Letters, 2015, 6, 2714-2721.	4.6	100
140	Long-Term Passivation of Strongly Interacting Metals with Single-Layer Graphene. Journal of the American Chemical Society, 2015, 137, 14358-14366.	13.7	133
141	Controlling Nanowire Growth by Light. Nano Letters, 2015, 15, 7452-7457.	9.1	16
142	Effects of polymethylmethacrylate-transfer residues on the growth of organic semiconductor molecules on chemical vapor deposited graphene. Applied Physics Letters, 2015, 106, .	3.3	54
143	Protecting nickel with graphene spin-filtering membranes: A single layer is enough. Applied Physics Letters, 2015, 107, .	3.3	65
144	Low temperature growth of carbon nanotubes on tetrahedral amorphous carbon using Fe–Cu catalyst. Carbon, 2015, 81, 639-649.	10.3	30

#	Article	IF	CITATIONS
145	CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield. Journal of the American Chemical Society, 2014, 136, 17808-17817.	13.7	30
146	Nitrogen controlled iron catalyst phase during carbon nanotube growth. Applied Physics Letters, 2014, 105, .	3.3	22
147	In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper. Chemistry of Materials, 2014, 26, 6380-6392.	6.7	190
148	Graphene-based optical modulator realized in metamaterial split-ring resonators operating in the THz frequency range. , 2014, , .		1
149	Terahertz optical modulator based on metamaterial split-ring resonators and graphene. Optical Engineering, 2014, 53, 057108.	1.0	17
150	Bioâ€Inspired Hierarchical Polymer Fiber–Carbon Nanotube Adhesives. Advanced Materials, 2014, 26, 1456-1461.	21.0	61
151	The role of the sp2:sp3 substrate content in carbon supported nanotube growth. Carbon, 2014, 75, 327-334.	10.3	17
152	Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene. ACS Nano, 2014, 8, 2548-2554.	14.6	131
153	Revealing lithium–silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nature Communications, 2014, 5, 3217.	12.8	332
154	EBSD study of substrate-mediated growth of hexagonal boron nitride. Journal of Physics: Conference Series, 2014, 522, 012070.	0.4	2
155	The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions. Physical Chemistry Chemical Physics, 2014, 16, 25989-26003.	2.8	108
156	Effect of Catalyst Pretreatment on Chirality-Selective Growth of Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2014, 118, 5773-5781.	3.1	37
157	Twin Plane Re-entrant Mechanism for Catalytic Nanowire Growth. Nano Letters, 2014, 14, 1288-1292.	9.1	41
158	Organic light emitting diodes with environmentally and thermally stable doped graphene electrodes. Journal of Materials Chemistry C, 2014, 2, 6940.	5 . 5	59
159	Binder free three-dimensional sulphur/few-layer graphene foam cathode with enhanced high-rate capability for rechargeable lithium sulphur batteries. Nanoscale, 2014, 6, 5746-5753.	5. 6	166
160	Interdependency of Subsurface Carbon Distribution and Graphene–Catalyst Interaction. Journal of the American Chemical Society, 2014, 136, 13698-13708.	13.7	95
161	Co-catalytic Absorption Layers for Controlled Laser-Induced Chemical Vapor Deposition of Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2014, 6, 4025-4032.	8.0	14
162	Sub-nanometer Atomic Layer Deposition for Spintronics in Magnetic Tunnel Junctions Based on Graphene Spin-Filtering Membranes. ACS Nano, 2014, 8, 7890-7895.	14.6	109

#	Article	IF	Citations
163	Metal Oxide Induced Charge Transfer Doping and Band Alignment of Graphene Electrodes for Efficient Organic Light Emitting Diodes. Scientific Reports, 2014, 4, 5380.	3.3	202
164	Catalyst Composition and Impurity-Dependent Kinetics of Nanowire Heteroepitaxy. ACS Nano, 2013, 7, 7689-7697.	14.6	11
165	<i>In Situ</i> Observations of the Atomistic Mechanisms of Ni Catalyzed Low Temperature Graphene Growth. ACS Nano, 2013, 7, 7901-7912.	14.6	163
166	Probing the electronic structure of multi-walled carbon nanotubes by transient optical transmittivity. Carbon, 2013, 57, 50-58.	10.3	8
167	Visible Diffraction from Graphene and Its Application in Holograms. Advanced Optical Materials, 2013, 1, 869-874.	7.3	17
168	Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper. Nano Letters, 2013, 13, 4769-4778.	9.1	231
169	Introducing Carbon Diffusion Barriers for Uniform, High-Quality Graphene Growth from Solid Sources. Nano Letters, 2013, 13, 4624-4631.	9.1	104
170	Intrinsic terahertz plasmon signatures in chemical vapour deposited graphene. Applied Physics Letters, 2013, 103, 121110.	3.3	12
171	Tantalum-oxide catalysed chemical vapour deposition of single- and multi-walled carbon nanotubes. RSC Advances, 2013, 3, 4086.	3.6	15
172	Transient reflectivity on vertically aligned single-wall carbon nanotubes. Thin Solid Films, 2013, 543, 51-55.	1.8	3
173	Synthesis of carbon nanotubes and graphene for VLSI interconnects. Microelectronic Engineering, 2013, 107, 210-218.	2.4	15
174	Elastic Properties of Crystalline–Amorphous Core–Shell Silicon Nanowires. Journal of Physical Chemistry C, 2013, 117, 4219-4226.	3.1	9
175	(Invited) All-Chemical Vapor Deposited Graphene/Silicon Nitride TFTs. ECS Transactions, 2013, 50, 217-221.	0.5	1
176	Highâ€density remote plasma sputtering of highâ€dielectricâ€constant amorphous hafnium oxide films. Physica Status Solidi (B): Basic Research, 2013, 250, 957-967.	1.5	25
177	Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition. Applied Physics Letters, 2012, 100, .	3.3	78
178	Metastable Crystalline AuGe Catalysts Formed During Isothermal Germanium Nanowire Growth. Physical Review Letters, 2012, 108, 255702.	7.8	26
179	Plasma stabilisation of metallic nanoparticles on silicon for the growth of carbon nanotubes. Journal of Applied Physics, 2012, 112, 034303.	2.5	13
180	Graphene-Passivated Nickel as an Oxidation-Resistant Electrode for Spintronics. ACS Nano, 2012, 6, 10930-10934.	14.6	138

#	Article	IF	Citations
181	The Phase of Iron Catalyst Nanoparticles during Carbon Nanotube Growth. Chemistry of Materials, 2012, 24, 4633-4640.	6.7	180
182	Optical feedback mechanisms in laser induced growth of carbon nanotube forests. Applied Physics Letters, 2012, 100, 013112.	3.3	8
183	Chemical vapor deposition of carbon nanotube forests. Physica Status Solidi (B): Basic Research, 2012, 249, 2315-2322.	1.5	22
184	Stretched Contact Printing of One-Dimensional Nanostructures for Hybrid Inorganic–Organic Field Effect Transistors. Journal of Physical Chemistry C, 2012, 116, 7118-7125.	3.1	25
185	Optimized Vertical Carbon Nanotube Forests for Multiplex Surface-Enhanced Raman Scattering Detection. Journal of Physical Chemistry Letters, 2012, 3, 3486-3492.	4.6	24
186	Co-Catalytic Solid-State Reduction Applied to Carbon Nanotube Growth. Journal of Physical Chemistry C, 2012, 116, 1107-1113.	3.1	23
187	Kinetic Control of Catalytic CVD for High-Quality Graphene at Low Temperatures. ACS Nano, 2012, 6, 9996-10003.	14.6	159
188	Indirect Modulation of a Terahertz Quantum Cascade Laser Using Gate Tunable Graphene. IEEE Photonics Journal, 2012, 4, 1776-1782.	2.0	7
189	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	1.5	25
190	The Parameter Space of Graphene Chemical Vapor Deposition on Polycrystalline Cu. Journal of Physical Chemistry C, 2012, 116, 22492-22501.	3.1	155
191	Adhesive Properties of Gecko-Inspired Mimetic via Micropatterned Carbon Nanotube Forests. Journal of Physical Chemistry C, 2012, 116, 20047-20053.	3.1	46
192	Complementary metal-oxide-semiconductor-compatible and self-aligned catalyst formation for carbon nanotube synthesis and interconnect fabrication. Journal of Applied Physics, 2012, 111, .	2.5	13
193	Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 2012, 100, 1486-1517.	21.3	822
194	Highly chiral-selective growth of single-walled carbon nanotubes with a simple monometallic Co catalyst. Physical Review B, 2012, 85, .	3.2	68
195	On the Mechanisms of Ni atalysed Graphene Chemical Vapour Deposition. ChemPhysChem, 2012, 13, 2544-2549.	2.1	90
196	Applications of Carbon Nanotubes Grown by Chemical Vapor Deposition. Japanese Journal of Applied Physics, 2012, 51, 01AH01.	1.5	23
197	Manipulation of the catalyst-support interactions for inducing nanotube forest growth. Journal of Applied Physics, 2011, 109, 044303-044303-7.	2.5	35
198	Cyclic Supersaturation and Triple Phase Boundary Dynamics in Germanium Nanowire Growth. Journal of Physical Chemistry C, 2011, 115, 4413-4417.	3.1	111

#	Article	IF	Citations
199	Reply to "Comment on 'Dynamic Catalyst Restructuring during Carbon Nanotube Growth'― ACS Nano, 2011, 5, 686-687.	14.6	0
200	Supportâ^'Catalystâ^'Gas Interactions during Carbon Nanotube Growth on Metallic Ta Films. Journal of Physical Chemistry C, 2011, 115, 4359-4369.	3.1	60
201	Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography. Applied Physics Letters, 2011, 98, .	3.3	36
202	In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growth. Nano Letters, 2011, 11, 4154-4160.	9.1	258
203	High-kâ€^(k=30) amorphous hafnium oxide films from high rate room temperature deposition. Applied Physics Letters, 2011, 98, .	3.3	61
204	Use of plasma treatment to grow carbon nanotube forests on TiN substrate. Journal of Applied Physics, 2011, 109, .	2.5	37
205	Transport measurements on carbon nanotubes structurally characterized by electron diffraction. Physical Review B, 2011, 84, .	3.2	4
206	The photoinduced charge transfer mechanism in aligned and unaligned carbon nanotubes. Carbon, 2011, 49, 5246-5252.	10.3	11
207	Hafnia nanoparticles – a model system for graphene growth on a dielectric. Physica Status Solidi - Rapid Research Letters, 2011, 5, 341-343.	2.4	25
208	Nanostructured hematite photoelectrochemical electrodes prepared by the low temperature thermal oxidation of iron. Solar Energy Materials and Solar Cells, 2011, 95, 1819-1825.	6.2	54
209	Carbon nanotube forest growth on NiTi shape memory alloy thin films for thermal actuation. Thin Solid Films, 2011, 519, 6126-6129.	1.8	19
210	Temperature dependent resistance and cryogenic microwave spectroscopy of Au decorated silicon nanowires. Journal of Applied Physics, 2011, 109, .	2.5	2
211	Ni-silicide growth kinetics in Si and Si/SiO ₂ core/shell nanowires. Nanotechnology, 2011, 22, 365305.	2.6	40
212	In-situ study of growth of carbon nanotube forests on conductive CoSi2 support. Journal of Applied Physics, 2011, 109, .	2.5	33
213	Device fabrication with precisely placed carbon nanotubes of known chiral vector. Journal of Physics: Conference Series, 2010, 241, 012082.	0.4	4
214	Analysis of carbon nanotube chiralities obtained from a bimetallic Coâ€Mo catalyst. Physica Status Solidi (B): Basic Research, 2010, 247, 2660-2663.	1.5	2
215	Growth of vertically-aligned carbon nanotube forests on conductive cobalt disilicide support. Journal of Applied Physics, 2010, 108, .	2.5	53
216	Growth of Ultrahigh Density Vertically Aligned Carbon Nanotube Forests for Interconnects. ACS Nano, 2010, 4, 7431-7436.	14.6	136

#	Article	IF	Citations
217	Formation of Metastable Liquid Catalyst during Subeutectic Growth of Germanium Nanowires. Nano Letters, 2010, 10, 2972-2976.	9.1	65
218	Dynamic Catalyst Restructuring during Carbon Nanotube Growth. ACS Nano, 2010, 4, 7587-7595.	14.6	74
219	Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes. Journal of Applied Physics, 2009, 105, 064304.	2.5	22
220	Stable colloidal Co–Pd nanocatalysts for carbon nanotube growth. Physica Status Solidi (B): Basic Research, 2009, 246, 2436-2439.	1.5	6
221	Acetylene: A Key Growth Precursor for Single-Walled Carbon Nanotube Forests. Journal of Physical Chemistry C, 2009, 113, 17321-17325.	3.1	120
222	Nanoscale Zirconia as a Nonmetallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall Carbon Nanotubes. Journal of the American Chemical Society, 2009, 131, 12144-12154.	13.7	219
223	Diffusion- and Reaction-Limited Growth of Carbon Nanotube Forests. ACS Nano, 2009, 3, 3560-3566.	14.6	127
224	State of the catalyst during carbon nanotube growth. Diamond and Related Materials, 2009, 18, 940-945.	3.9	80
225	Growth of high-density vertically aligned arrays of carbon nanotubes by plasma-assisted catalyst pretreatment. Applied Physics Letters, 2009, 95, .	3.3	43
226	State of Transition Metal Catalysts During Carbon Nanotube Growth. Journal of Physical Chemistry C, 2009, 113, 1648-1656.	3.1	166
227	Use of carbon nanotubes for VLSI interconnects. Diamond and Related Materials, 2009, 18, 957-962.	3.9	54
228	Design of gas diffusion electrodes using nanocarbon. Journal of Power Sources, 2008, 176, 494-498.	7.8	25
229	Surface-bound chemical vapour deposition of carbon nanotubes: In situ study of catalyst activation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 2238-2242.	2.7	16
230	Ledge-flow-controlled catalyst interface dynamics during Si nanowire growth. Nature Materials, 2008, 7, 372-375.	27.5	248
231	Growth of aligned millimeter-long carbon nanotube by chemical vapor deposition. Diamond and Related Materials, 2008, 17, 1447-1451.	3.9	44
232	Structure and growth mechanism of ZnSe nanowires. Journal of Applied Physics, 2008, 104, .	2.5	23
233	Surface properties of vertically aligned carbon nanotube arrays. Diamond and Related Materials, 2008, 17, 1518-1524.	3.9	68
234	In-situ X-ray Photoelectron Spectroscopy Study of Catalystâ ⁻ 'Support Interactions and Growth of Carbon Nanotube Forests. Journal of Physical Chemistry C, 2008, 112, 12207-12213.	3.1	240

#	Article	IF	Citations
235	Enhanced Subthreshold Slopes in Large Diameter Single Wall Carbon Nanotube Field Effect Transistors. IEEE Nanotechnology Magazine, 2008, 7, 458-462.	2.0	16
236	Catalyst Dynamics during Carbon Nanotube and Si Nanowire CVD. Microscopy and Microanalysis, 2008, 14, 206-207.	0.4	0
237	Controlling the Catalyst During Carbon Nanotube Growth. Journal of Nanoscience and Nanotechnology, 2008, 8, 6105-6111.	0.9	12
238	Time resolved in-situ TEM observations of Carbon Nanotube growth. , 2008, , 165-166.		1
239	Thermal and chemical vapor deposition of Si nanowires: Shape control, dispersion, and electrical properties. Journal of Applied Physics, 2007, 102, .	2.5	80
240	Synthesis of individual single-walled carbon nanotube bridges controlled by support micromachining. Journal of Micromechanics and Microengineering, 2007, 17, 603-608.	2.6	29
241	Flying and Crawling Modes during Surface-Bound Single Wall Carbon Nanotube Growth. Journal of Physical Chemistry C, 2007, 111, 17249-17253.	3.1	9
242	In situ Observations of Catalyst Dynamics during Surface-Bound Carbon Nanotube Nucleation. Nano Letters, 2007, 7, 602-608.	9.1	662
243	Catalytic and seeded shape-selective synthesis of Il–VI semiconductor nanowires. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 138-141.	2.7	7
244	The role of precursor gases on the surface restructuring of catalyst films during carbon nanotube growth. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 37, 1-5.	2.7	76
245	Scalable silicon nanowire photodetectors. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 64-66.	2.7	48
246	Effects of pre-treatment and plasma enhancement on chemical vapor deposition of carbon nanotubes from ultra-thin catalyst films. Diamond and Related Materials, 2006, 15, 1029-1035.	3.9	40
247	Selective growth of vertically aligned carbon nanofibres in sub-micron patterns and Raman mapping of produced arrays. Diamond and Related Materials, 2006, 15, 1023-1028.	3.9	7
248	Catalytic Chemical Vapor Deposition of Single-Wall Carbon Nanotubes at Low Temperatures. Nano Letters, 2006, 6, 1107-1112.	9.1	297
249	Shape-selective synthesis of II–VI semiconductor nanowires. Physica Status Solidi (B): Basic Research, 2006, 243, 3301-3305.	1.5	9
250	Synthesis and optical properties of silicon nanowires grown by different methods. Applied Physics A: Materials Science and Processing, 2006, 85, 247-253.	2.3	45
251	Deterministic shape-selective synthesis of nanowires, nanoribbons and nanosaws by steady-state vapour-transport. Nanotechnology, 2006, 17, 1046-1051.	2.6	22
252	Low temperature synthesis of carbon nanofibres on carbon fibre matrices. Carbon, 2005, 43, 2643-2648.	10.3	60

#	Article	IF	CITATIONS
253	Surface Diffusion: The Low Activation Energy Path for Nanotube Growth. Physical Review Letters, 2005, 95, 036101.	7.8	362
254	Nickel Formate Route to the Growth of Carbon Nanotubes ChemInform, 2005, 36, no.	0.0	0
255	Catalyst patterning methods for surface-bound chemical vapor deposition of carbon nanotubes. Applied Physics A: Materials Science and Processing, 2005, 81, 1559-1567.	2.3	23
256	Submicron patterning of Co colloid catalyst for growth of vertically aligned carbon nanotubes. Nanotechnology, 2005, 16, 1636-1640.	2.6	27
257	Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Applied Physics Letters, 2005, 86, 153103.	3.3	87
258	Selective growth of ZnSe and ZnCdSe nanowires by molecular beam epitaxy. Nanotechnology, 2005, 16, S139-S142.	2.6	32
259	Wet catalyst assisted growth of carbon nanofibers on complex three-dimensional substrates. Diamond and Related Materials, 2005, 14, 733-738.	3.9	22
260	Effects of catalyst film thickness on plasma-enhanced carbon nanotube growth. Journal of Applied Physics, 2005, 98, 034308.	2.5	123
261	Direct Growth of Carbon Nanofibers on Plastic Substrates. AIP Conference Proceedings, 2004, , .	0.4	0
262	Growth of aligned carbon nanofibres over large areas using colloidal catalysts at low temperatures. Chemical Communications, 2004, , 1416.	4.1	28
263	Low Temperature Growth of Carbon Nanotubes and Nanofibres. Materials Research Society Symposia Proceedings, 2004, 858, 138.	0.1	0
264	Self-assembly of novel nanowires by thermolysis of fullerene and transition metal thin films. Nanotechnology, 2004, 15, 601-608.	2.6	7
265	Nickel Formate Route to the Growth of Carbon Nanotubes. Journal of Physical Chemistry B, 2004, 108, 18446-18450.	2.6	32
266	Low-temperature plasma enhanced chemical vapour deposition of carbon nanotubes. Diamond and Related Materials, 2004, 13, 1171-1176.	3.9	81
267	Synthesis of Silicon Nanowires. AIP Conference Proceedings, 2004, , .	0.4	5
268	Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2003, 94, 6005-6012.	2.5	247
269	Raman Spectrum of silicon nanowires. Materials Science and Engineering C, 2003, 23, 931-934.	7.3	60
270	Controlled low-temperature growth of carbon nanofibres by plasma deposition. New Journal of Physics, 2003, 5, 153-153.	2.9	22

#	Article	IF	CITATIONS
271	Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2003, 83, 135-137.	3.3	364
272	Raman spectroscopy of silicon nanowires. Physical Review B, 2003, 68, .	3.2	326
273	Direct growth of aligned carbon nanotube field emitter arrays onto plastic substrates. Applied Physics Letters, 2003, 83, 4661-4663.	3.3	164
274	Low-Temperature Self-Assembly of Novel Compound Nanowires. AIP Conference Proceedings, 2003, , .	0.4	0
275	Raman Spectroscopy of Silicon Nanowires: Phonon Confinement and Anharmonic Phonon Processes. AIP Conference Proceedings, 2003, , .	0.4	1
276	Low-Temperature Self-Assembly of Novel Encapsulated Compound Nanowires. Advanced Materials, 2002, 14, 1821-1824.	21.0	15
277	Summary Abstract: Surface segregation and lowâ€ŧemperature oxidation of Ni–Cr alloys. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1987, 5, 650-651.	2.1	9
278	Growth of ZnSe nanowires by molecular beam epitaxy. , 0, , .		0
279	Mapping Bulk and Interfacial Charge Carrier Recombination Dynamics in Perovskite Optoelectronic Devices. , 0, , .		0