
David L Paul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578992/publications.pdf Version: 2024-02-01

ΠΑΥΙΟ Ι ΡΑΙΙΙ

#	Article	IF	CITATIONS
1	Genetic elimination of rod/cone coupling reveals the contribution of the secondary rod pathway to the retinal output. Science Advances, 2022, 8, eabm4491.	10.3	8
2	Respiratory disturbances and high risk of sudden death in the neonatal connexinâ€36 knockout mouse. Physiological Reports, 2021, 9, e15109.	1.7	2
3	Molecular and functional architecture of the mouse photoreceptor network. Science Advances, 2020, 6, eaba7232.	10.3	35
4	Multiplexed peroxidase-based electron microscopy labeling enables simultaneous visualization of multiple cell types. Nature Neuroscience, 2019, 22, 828-839.	14.8	62
5	Gap Junctions Contribute to Differential Light Adaptation across Direction-Selective Retinal Ganglion Cells. Neuron, 2018, 100, 216-228.e6.	8.1	47
6	Segregated Foxc2, NFATc1 and Connexin expression at normal developing venous valves, and Connexin-specific differences in the valve phenotypes of Cx37, Cx43, and Cx47 knockout mice. Developmental Biology, 2016, 412, 173-190.	2.0	36
7	Inhibition of connexin 36 hemichannels by glucose contributes to the stimulation of insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1354-E1366.	3.5	12
8	Gap Junction-Mediated Death of Retinal Neurons Is Connexin and Insult Specific: A Potential Target for Neuroprotection. Journal of Neuroscience, 2014, 34, 10582-10591.	3.6	54
9	A novel, highly sensitive method for assessing gap junctional coupling. Journal of Neuroscience Methods, 2013, 220, 18-23.	2.5	8
10	Functional heterotypic interactions between astrocyte and oligodendrocyte connexins. Glia, 2011, 59, 26-34.	4.9	70
11	Deletion of oligodendrocyte Cx32 and astrocyte Cx43 causes white matter vacuolation, astrocyte loss and early mortality. Glia, 2011, 59, 1064-1074.	4.9	84
12	Cx50 requires an intact PDZ-binding motif and ZO-1 for the formation of functional intercellular channels. Molecular Biology of the Cell, 2011, 22, 4503-4512.	2.1	26
13	Gap Junctions. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002576-a002576.	5.5	498
14	Genetic Dissection of Rod and Cone Pathways in the Dark-Adapted Mouse Retina. Journal of Neurophysiology, 2009, 102, 1945-1955.	1.8	85
15	The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells. BMC Neuroscience, 2009, 10, 13.	1.9	50
16	Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. Journal of Neuroscience Research, 2008, 86, 992-1006.	2.9	71
17	Genetic and Physiological Evidence That Oligodendrocyte Gap Junctions Contribute to Spatial Buffering of Potassium Released during Neuronal Activity. Journal of Neuroscience, 2006, 26, 10984-10991.	3.6	151
18	Connexin29 Is Highly Expressed in Cochlear Schwann Cells, and It Is Required for the Normal Development and Function of the Auditory Nerve of Mice. Journal of Neuroscience, 2006, 26, 1991-1999.	3.6	72

DAVID L PAUL

#	Article	IF	CITATIONS
19	Morphology and tracer coupling pattern of alpha ganglion cells in the mouse retina. Journal of Comparative Neurology, 2005, 492, 66-77.	1.6	92
20	Convergence and Segregation of the Multiple Rod Pathways in Mammalian Retina. Journal of Neuroscience, 2004, 24, 11182-11192.	3.6	162
21	Four Classes of Intercellular Channels between Glial Cells in the CNS. Journal of Neuroscience, 2004, 24, 4313-4323.	3.6	155
22	Connexins: functions without junctions. Current Opinion in Cell Biology, 2004, 16, 507-512.	5.4	164
23	Unique distributions of the gap junction proteins connexin29, connexin32, and connexin47 in oligodendrocytes. Glia, 2004, 47, 346-357.	4.9	135
24	Beyond the gap: functions of unpaired connexon channels. Nature Reviews Molecular Cell Biology, 2003, 4, 285-295.	37.0	645
25	Connexins Are Critical for Normal Myelination in the CNS. Journal of Neuroscience, 2003, 23, 5963-5973.	3.6	279
26	Connexin36 Is Essential for Transmission of Rod-Mediated Visual Signals in the Mammalian Retina. Neuron, 2002, 36, 703-712.	8.1	390
27	Connexin29 Is Uniquely Distributed within Myelinating Glial Cells of the Central and Peripheral Nervous Systems. Journal of Neuroscience, 2002, 22, 6458-6470.	3.6	223
28	Synchronous Activity of Inhibitory Networks in Neocortex Requires Electrical Synapses Containing Connexin36. Neuron, 2001, 31, 477-485.	8.1	533
29	Mouse Horizontal Cells do not Express Connexin26 or Connexin36. Cell Communication and Adhesion, 2001, 8, 361-366.	1.0	46
30	trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. Journal of Cell Science, 2001, 114, 2105-2113.	2.0	162
31	A targeted disruption in connexin40 leads to distinct atrioventricular conduction defects. Journal of Interventional Cardiac Electrophysiology, 2000, 4, 459-567.	1.3	66
32	Gap Junctional Communication in the Early Xenopus Embryo. Journal of Cell Biology, 2000, 150, 929-936.	5.2	25
33	Occludin 1B, a Variant of the Tight Junction Protein Occludin. Molecular Biology of the Cell, 2000, 11, 627-634.	2.1	112
34	GENETIC DISEASES AND GENE KNOCKOUTS REVEAL DIVERSE CONNEXIN FUNCTIONS. Annual Review of Physiology, 1999, 61, 283-310.	13.1	375
35	Gap Junctional Intercellular Communication in the Mouse Ovarian Follicle. Novartis Foundation Symposium, 1999, 219, 226-240.	1.1	19
36	Connexin mutations in deafness. Nature, 1998, 394, 630-631.	27.8	119

DAVID L PAUL

#	Article	IF	CITATIONS
37	Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Human Genetics, 1998, 103, 393-399.	3.8	272
38	Targeted Ablation of Connexin50 in Mice Results in Microphthalmia and Zonular Pulverulent Cataracts. Journal of Cell Biology, 1998, 143, 815-825.	5.2	327
39	Connexin43 Is Highly Localized to Sites of Disturbed Flow in Rat Aortic Endothelium but Connexin37 and Connexin40 Are More Uniformly Distributed. Circulation Research, 1998, 83, 636-643.	4.5	257
40	Female infertility in mice lacking connexin 37. Nature, 1997, 385, 525-529.	27.8	651
41	Connections with Connexins: the Molecular Basis of Direct Intercellular Signaling. FEBS Journal, 1996, 238, 1-27.	0.2	1,190
42	DOMINANT INHIBITION OF INTERCELLULAR COMMUNICATION BY TWO CHIMERIC CONNEXINS. Clinical and Experimental Pharmacology and Physiology, 1996, 23, 1062-1067.	1.9	6
43	Proliferation-associated differences in the spatial and temporal expression of gap junction genes in rat liver. Hepatology, 1995, 22, 202-212.	7.3	45
44	Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anatomy and Embryology, 1995, 191, 101-18.	1.5	520
45	Intercellular channels in teleosts: functional characterization of two connexins from Atlantic croaker. FEBS Letters, 1995, 358, 301-304.	2.8	18
46	Differences in the expression of connexin genes in rat hepatomas in vivo and in vitro. Molecular Carcinogenesis, 1994, 11, 145-154.	2.7	29
47	Expression of gap junction proteins Cx26, Cx31.1, Cx37, and Cx43 in developing and mature rat epidermis. Developmental Dynamics, 1994, 200, 1-13.	1.8	129
48	Voltage gating of connexins. Nature, 1994, 371, 208-209.	27.8	56
49	Gap Junction Systems in the Rat Vestibular Labyrinth: Immunohistochemical and Ultrastructural Analysis. Acta Oto-Laryngologica, 1994, 114, 520-528.	0.9	96
50	Zygotic expression of the connexin43 gene supplies subunits for gap junction assembly during mouse preimplantation development. Molecular Reproduction and Development, 1991, 30, 18-26.	2.0	57
51	Connexin family of gap junction proteins. Journal of Membrane Biology, 1990, 116, 187-194.	2.1	530
52	Connexin32, a gap junction protein, is a persistent oogenetic product through preimplantation development of the mouse. Genesis, 1989, 10, 318-323.	2.1	55