John R Perfect

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The emergence of COVID-19 associated mucormycosis: a review of cases from 18 countries. Lancet Microbe, The, 2022, 3, e543-e552.	7.3	255
2	OUP accepted manuscript. Medical Mycology, 2022, , .	0.7	2
3	Conventional Antifungals for Invasive Infections Delivered by Unconventional Methods; Aerosols, Irrigants, Directed Injections and Impregnated Cement. Journal of Fungi (Basel, Switzerland), 2022, 8, 212.	3.5	5
4	Editorial: Antifungal Pipeline: Build It Strong; Build It Better!. Frontiers in Cellular and Infection Microbiology, 2022, 12, 881272.	3.9	6
5	Noninvasive Testing and Surrogate Markers in Invasive Fungal Diseases. Open Forum Infectious Diseases, 2022, 9, .	0.9	25
6	Transcriptional Profiles Elucidate Differential Host Responses to Infection with Cryptococcus neoformans and Cryptococcus gattii. Journal of Fungi (Basel, Switzerland), 2022, 8, 430.	3.5	2
7	Invasive candidiasis: investigational drugs in the clinical development pipeline and mechanisms of action. Expert Opinion on Investigational Drugs, 2022, 31, 795-812.	4.1	23
8	Superiority of a Novel Mp1p Antigen Detection Enzyme Immunoassay Compared to Standard BACTEC Blood Culture in the Diagnosis of Talaromycosis. Clinical Infectious Diseases, 2021, 73, e330-e336.	5.8	29
9	Outcomes and Health Care Resource Utilization of Adult Bacterial Meningitis in the United States. Neurology: Clinical Practice, 2021, 11, 117-126.	1.6	1
10	Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infectious Diseases, The, 2021, 21, e149-e162.	9.1	586
11	Uncommon Yeasts and Molds Causing Human Disease. , 2021, , 813-834.		7
12	Cryptococcal Antigen in Serum and Cerebrospinal Fluid for Detecting Cryptococcal Meningitis in Adults Living With Human Immunodeficiency Virus: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. Clinical Infectious Diseases, 2021, 72, 1268-1278.	5.8	51
13	Paediatric bacterial meningitis in the USA: outcomes and healthcare resource utilization of nosocomial versus community-acquired infection. Journal of Medical Microbiology, 2021, 70, .	1.8	4
14	MSG07: An International Cohort Study Comparing Epidemiology and Outcomes of Patients With <i>Cryptococcus neoformans</i> or <i>Cryptococcus gattii</i> Infections. Clinical Infectious Diseases, 2021, 73, 1133-1141.	5.8	26
15	Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. Journal of Fungi (Basel, Switzerland), 2021, 7, 260.	3.5	41
16	Amoeba Predation of Cryptococcus neoformans Results in Pleiotropic Changes to Traits Associated with Virulence. MBio, 2021, 12, .	4.1	27
17	Reply to Day et al. Journal of Infectious Diseases, 2021, 224, 1627-1628.	4.0	1
18	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	28.9	57

#	Article	IF	CITATIONS
19	Comparison of Cryptococcus gattii/neoformans Species Complex to Related Genera (Papiliotrema and) Tj ETQq1 in Cellular and Infection Microbiology, 2021, 11, 642658.	1 0.78431 3.9	4 rgBT /Ove 6
20	ECMM/ISHAM recommendations for clinical management of COVIDâ€19 associated mucormycosis in low― and middleâ€income countries. Mycoses, 2021, 64, 1028-1037.	4.0	137
21	Global guideline for the diagnosis and management of rare yeast infections: an initiative of the ECMM in cooperation with ISHAM and ASM. Lancet Infectious Diseases, The, 2021, 21, e375-e386.	9.1	80
22	Cryptococcal meningoencephalitis: time for action. Lancet Infectious Diseases, The, 2021, 21, e259-e271.	9.1	29
23	Fungal Infections of the Central Nervous System. , 2021, , 803-819.		0
24	A randomized, double-blind, placebo-controlled clinical trial of fluconazole as early empiric treatment of coccidioidomycosis pneumonia (Valley Fever) in adults presenting with community-acquired pneumonia in endemic areas (FLEET-Valley Fever). Contemporary Clinical Trials Communications, 2021, 24, 100851.	1.1	4
25	<i>Curvularia alcornii</i> Aortic Pseudoaneurysm Following Aortic Valve Replacement: Case Report and Review of the Literature. Open Forum Infectious Diseases, 2021, 8, ofab536.	0.9	3
26	Gene Expression of Diverse Cryptococcus Isolates during Infection of the Human Central Nervous System. MBio, 2021, 12, e0231321.	4.1	23
27	A global call for talaromycosis to be recognised as a neglected tropical disease. The Lancet Global Health, 2021, 9, e1618-e1622.	6.3	52
28	Inositol Metabolism Regulates Capsule Structure and Virulence in the Human Pathogen Cryptococcus neoformans. MBio, 2021, 12, e0279021.	4.1	10
29	Invasive Fungal Infection After Lung Transplantation: Epidemiology in the Setting of Antifungal Prophylaxis. Clinical Infectious Diseases, 2020, 70, 30-39.	5.8	79
30	A case of CNS aspergillosis in a patient with chronic lymphocytic leukemia on first-line ibrutinib therapy. Medical Mycology Case Reports, 2020, 27, 17-21.	1.3	10
31	Revision and Update of the Consensus Definitions of Invasive Fungal Disease From the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clinical Infectious Diseases, 2020, 71, 1367-1376.	5.8	1,429
32	Occult <i>Talaromyces marneffei</i> Infection Unveiled by the Novel Mp1p Antigen Detection Assay. Open Forum Infectious Diseases, 2020, 7, ofaa502.	0.9	14
33	Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. Journal of Infectious Diseases, 2020, 222, S175-S198.	4.0	83
34	Emerging Issues in Antifungal Resistance. Infectious Disease Clinics of North America, 2020, 34, 921-943.	5.1	26
35	The virulence factor urease and its unexplored role in the metabolism of <i>Cryptococcus neoformans</i> . FEMS Yeast Research, 2020, 20, .	2.3	13
36	Clinical mycology today: A synopsis of the mycoses study group education and research consortium (MSGERC) second biennial meeting, September 27–30, 2018, Big Sky, Montana, a proposed global research agenda. Medical Mycology, 2020, 58, 569-578.	0.7	1

#	Article	IF	CITATIONS
37	Black mold takes hold and story told. Medical Mycology Case Reports, 2020, 29, 12-14.	1.3	1
38	The robust and rapid role of molecular testing in precision fungal diagnostics: A case report. Medical Mycology Case Reports, 2020, 27, 77-80.	1.3	10
39	Assessing the virulence of Cryptococcus neoformans causing meningitis in HIV infected and uninfected patients in Vietnam. Medical Mycology, 2020, 58, 1149-1161.	0.7	8
40	Combination Therapy for Invasive Fungal Infections. Current Fungal Infection Reports, 2020, 14, 40-49.	2.6	29
41	Complete Genome Sequences for Two <i>Talaromyces marneffei</i> Clinical Isolates from Northern and Southern Vietnam. Microbiology Resource Announcements, 2020, 9, .	0.6	7
42	The longitudinal health economic impact of viral encephalitis in the United States. Journal of Medical Microbiology, 2020, 69, 270-279.	1.8	7
43	Landscape of gene expression variation of natural isolates of Cryptococcus neoformans in response to biologically relevant stresses. Microbial Genomics, 2020, 6, .	2.0	24
44	168. Efficacy of the Novel gwt1 Inhibitor APX2039 in a Rabbit Model of <i>cryptococcus Meningitis</i> . Open Forum Infectious Diseases, 2020, 7, S213-S213.	0.9	0
45	Real-world implications of QT prolongation in patients receiving voriconazole and amiodarone. Journal of Antimicrobial Chemotherapy, 2019, 74, 228-233.	3.0	7
46	Invasive Fungal Disease in the Transplant Population: An Overview. , 2019, , 519-541.		1
47	Cryptococcus neoformans resists to drastic conditions by switching to viable but non-culturable cell phenotype. PLoS Pathogens, 2019, 15, e1007945.	4.7	31
48	2112. Voriconazole for Primary Prophylaxis: A Decade of Trends and Outcomes. Open Forum Infectious Diseases, 2019, 6, S715-S715.	0.9	0
49	Genotypic diversity and clinical outcome of cryptococcosis in renal transplant recipients in Brazil. Emerging Microbes and Infections, 2019, 8, 119-129.	6.5	25
50	Pharmacodynamics of Isavuconazole in a Rabbit Model of Cryptococcal Meningoencephalitis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10
51	A Genome-Wide Functional Genomics Approach Identifies Susceptibility Pathways to Fungal Bloodstream Infection in Humans. Journal of Infectious Diseases, 2019, 220, 862-872.	4.0	17
52	Regulatory Mechanism of the Atypical AP-1-Like Transcription Factor Yap1 in Cryptococcus neoformans. MSphere, 2019, 4, .	2.9	8
53	1758. Epidemiology of Invasive Mycoplasma and Ureaplasma Infections Early after Lung Transplantation. Open Forum Infectious Diseases, 2019, 6, S646-S646.	0.9	5
54	Fluconazole Monotherapy Is a Suboptimal Option for Initial Treatment of Cryptococcal Meningitis Because of Emergence of Resistance. MBio, 2019, 10, .	4.1	44

#	Article	IF	CITATIONS
55	Population Pharmacodynamics of Amphotericin B Deoxycholate for Disseminated Infection Caused by Talaromyces marneffei. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	6
56	How Clean Is the Linen at My Hospital? The Mucorales on Unclean Linen Discovery Study of Large United States Transplant and Cancer Centers. Clinical Infectious Diseases, 2019, 68, 850-853.	5.8	31
57	Performance of the T2Bacteria Panel for Diagnosing Bloodstream Infections. Annals of Internal Medicine, 2019, 170, 845.	3.9	72
58	Management of phaeohyphomycosis. , 2019, , 337-345.		0
59	Management of mucormycoses. , 2019, , 357-362.		0
60	Management of cryptococcosis. , 2019, , 301-315.		0
61	Isavuconazole for treatment of invasive fungal diseases caused by more than one fungal species. Mycoses, 2018, 61, 485-497.	4.0	24
62	Isavuconazole for treatment of rare invasive fungal diseases. Mycoses, 2018, 61, 518-533.	4.0	32
63	Genomeâ€wide analysis of the regulation of Cu metabolism in <i>Cryptococcus neoformans</i> . Molecular Microbiology, 2018, 108, 473-494.	2.5	34
64	Tolerability profile of the current antifungal armoury. Journal of Antimicrobial Chemotherapy, 2018, 73, i26-i32.	3.0	41
65	Isavuconazole treatment for rare fungal diseases and for invasive aspergillosis in patients with renal impairment: Challenges and lessons of the <scp>VITAL</scp> trial. Mycoses, 2018, 61, 420-429.	4.0	25
66	Prevalence, healthcare resource utilization and overall burden of fungal meningitis in the United States. Journal of Medical Microbiology, 2018, 67, 215-227.	1.8	38
67	Phenotypic Variability Correlates with Clinical Outcome in <i>Cryptococcus</i> Isolates Obtained from Botswanan HIV/AIDS Patients. MBio, 2018, 9, .	4.1	50
68	Novel Treatment of Cryptococcal Meningitis via Neurapheresis Therapy. Journal of Infectious Diseases, 2018, 218, 1147-1154.	4.0	28
69	Genomic characterization of recurrent mold infections in thoracic transplant recipients. Transplant Infectious Disease, 2018, 20, e12935.	1.7	5
70	Titan cells formation in Cryptococcus neoformans is finely tuned by environmental conditions and modulated by positive and negative genetic regulators. PLoS Pathogens, 2018, 14, e1006982.	4.7	119
71	Present and Future Therapy of Cryptococcus Infections. Journal of Fungi (Basel, Switzerland), 2018, 4, 79.	3.5	46
72	Pulmonary blastomycosis presenting as primary lung cancer. BMC Infectious Diseases, 2018, 18, 336.	2.9	10

#	Article	IF	CITATIONS
73	The war on cryptococcosis: A Review of the antifungal arsenal. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e170391.	1.6	54
74	<i>In Vitro</i> and <i>In Vivo</i> Evaluation of APX001A/APX001 and Other Gwt1 Inhibitors against Cryptococcus. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	90
75	On-demand release of Candida albicans biofilms from urinary catheters by mechanical surface deformation. Biofouling, 2018, 34, 595-604.	2.2	2
76	Trehalose pathway as an antifungal target. Virulence, 2017, 8, 143-149.	4.4	53
77	The Case for Adopting the "Species Complex―Nomenclature for the Etiologic Agents of Cryptococcosis. MSphere, 2017, 2, .	2.9	274
78	What Can the Clinical Mycology Laboratory Do for Clinicians Today and Tomorrow?. Current Clinical Microbiology Reports, 2017, 4, 96-105.	3.4	3
79	Experimental Models of Short Courses of Liposomal Amphotericin B for Induction Therapy for Cryptococcal Meningitis. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	27
80	The antifungal pipeline: a reality check. Nature Reviews Drug Discovery, 2017, 16, 603-616.	46.4	574
81	Population genomics and the evolution of virulence in the fungal pathogen <i>Cryptococcus neoformans</i> . Genome Research, 2017, 27, 1207-1219.	5.5	134
82	Fungi that Infect Humans. Microbiology Spectrum, 2017, 5, .	3.0	149
83	Emergence of the Molds Other than Aspergillus in Immunocompromised Patients. Clinics in Chest Medicine, 2017, 38, 555-573.	2.1	9
84	Microevolution of Serial Clinical Isolates of <i>Cryptococcus neoformans</i> var. <i>grubii</i> and <i>C.Âgattii</i> . MBio, 2017, 8, .	4.1	69
85	Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development. Microbiology and Molecular Biology Reviews, 2017, 81, .	6.6	93
86	Novel Agents and Drug Targets to Meet the Challenges of Resistant Fungi. Journal of Infectious Diseases, 2017, 216, S474-S483.	4.0	135
87	Structural and <i>In Vivo</i> Studies on Trehalose-6-Phosphate Synthase from Pathogenic Fungi Provide Insights into Its Catalytic Mechanism, Biological Necessity, and Potential for Novel Antifungal Drug Design. MBio, 2017, 8, .	4.1	26
88	Reply to Argüelles. Virulence, 2017, 8, 239-239.	4.4	1
89	Tracing Genetic Exchange and Biogeography of <i>Cryptococcus neoformans</i> var. <i>grubii</i> at the Global Population Level. Genetics, 2017, 207, 327-346.	2.9	105
90	Efficient, Cost-Effective, High-Throughput, Multilocus Sequencing Typing (MLST) Method, NGMLST, and the Analytical Software Program MLSTEZ. Methods in Molecular Biology, 2017, 1492, 197-202.	0.9	4

#	Article	IF	CITATIONS
91	Curious Crosses: Injection-Induced Lesions. American Journal of Medicine, 2017, 130, 31-33.	1.5	1
92	Comparing outcomes of early, late, and non-surgical management of intraspinal abscess. Journal of Clinical Neuroscience, 2017, 36, 64-71.	1.5	17
93	Efficacy of Oral APX001 in a Murine Model of Cryptococcal Meningitis. Open Forum Infectious Diseases, 2017, 4, S478-S478.	0.9	5
94	Fungi that Infect Humans. , 2017, , 811-843.		8
95	QTc Prolongation in Patients Receiving Triazoles and Amiodarone. Open Forum Infectious Diseases, 2017, 4, S84-S84.	0.9	3
96	Disseminated Cryptococcosis With Brain Involvement in Patients With Chronic Lymphoid Malignancies on Ibrutinib. Open Forum Infectious Diseases, 2017, 4, ofw261.	0.9	48
97	Feasibility of Neurapheresisâ"¢ as a Therapy for Multidrug Resistant Gram-negative Bacterial Meningitis. Open Forum Infectious Diseases, 2017, 4, S480-S481.	0.9	4
98	In Vitro Characterization of the Neurapheresisâ,,¢ System for the Treatment of Cryptococcal Meningitis. Open Forum Infectious Diseases, 2017, 4, S481-S481.	0.9	2
99	Dosing Voriconazole in Obese Patients. Open Forum Infectious Diseases, 2017, 4, S292-S293.	0.9	Ο
100	Drug Resistance in Cryptococcosis. , 2017, , 1119-1140.		4
101	An integrative genomics approach identifies novel pathways that influence candidaemia susceptibility. PLoS ONE, 2017, 12, e0180824.	2.5	24
102	Familial Adenomatous Polyposis Manifesting as <i>Lactococcus</i> Endocarditis: A Case Report and Review of the Association of <i>Lactococcus</i> with Underlying Gastrointestinal Disease. Case Reports in Infectious Diseases, 2016, 2016, 1-5.	0.5	5
103	On-Demand Release of Candida albicans Biofilms From Urinary Catheters by Mechanical Surface Deformation. Open Forum Infectious Diseases, 2016, 3, .	0.9	Ο
104	Copy number variation contributes to cryptic genetic variation in outbreak lineages of Cryptococcus gattii from the North American Pacific Northwest. BMC Genomics, 2016, 17, 700.	2.8	36
105	Identification of Host-Derived Biomarker Signatures in Cryptococcal Infection. Open Forum Infectious Diseases, 2016, 3, .	0.9	Ο
106	Repeated therapeutic lumbar punctures in cryptococcal meningitis – necessity and/or opportunity?. Current Opinion in Infectious Diseases, 2016, 29, 539-545.	3.1	21
107	Cases of disseminated cryptococcosis in intravenous drug abusers without HIV infection: A new risk factor?. Medical Mycology Case Reports, 2016, 14, 17-19.	1.3	18
108	<i>Editorial Commentary</i> : Life-saving Antimicrobial Drugs: What Are We Doing to Pricing and Availability?. Clinical Infectious Diseases, 2016, 62, 1569-1570.	5.8	2

#	Article	IF	CITATIONS
109	Isavuconazole Treatment of Cryptococcosis and Dimorphic Mycoses. Clinical Infectious Diseases, 2016, 63, 356-362.	5.8	167
110	Intracellular Action of a Secreted Peptide Required for Fungal Virulence. Cell Host and Microbe, 2016, 19, 849-864.	11.0	93
111	Genetic Susceptibility to Fungal Infections: What is in the Genes?. Current Clinical Microbiology Reports, 2016, 3, 81-91.	3.4	34
112	The current treatment landscape: other fungal diseases (cryptococcosis, fusariosis and) Tj ETQq0 0 0 rgBT /Over	oc <u>k</u> 10 Tf	50,622 Td (n
113	Simple Strategy for Taming Membrane-Disrupting Antibiotics. Bioconjugate Chemistry, 2016, 27, 2850-2853.	3.6	10
114	The Zinc Finger Protein Mig1 Regulates Mitochondrial Function and Azole Drug Susceptibility in the Pathogenic Fungus Cryptococcus neoformans. MSphere, 2016, 1, .	2.9	28
115	Structures of trehalose-6-phosphate phosphatase from pathogenic fungi reveal the mechanisms of substrate recognition and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7148-7153.	7.1	44
116	"ls there an emerging need for new antifungals?― Expert Opinion on Emerging Drugs, 2016, 21, 129-131.	2.4	68
117	CXCR1-mediated neutrophil degranulation and fungal killing promote <i>Candida</i> clearance and host survival. Science Translational Medicine, 2016, 8, 322ra10.	12.4	71
118	Cryptococcosis. Infectious Disease Clinics of North America, 2016, 30, 179-206.	5.1	473
119	Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infectious Diseases, The, 2016, 16, 828-837.	9.1	528
120	A Novel Therapeutic Approach for Cryptococcal Meningitis. Open Forum Infectious Diseases, 2016, 3, .	0.9	3
121	Comparative analyses of clinical and environmental populations of <i><scp>C</scp>ryptococcus neoformans</i> in <scp>B</scp> otswana. Molecular Ecology, 2015, 24, 3559-3571.	3.9	61
122	AMBITION-cm: intermittent high dose AmBisome on a high dose fluconazole backbone for cryptococcal meningitis induction therapy in sub-Saharan Africa: study protocol for a randomized controlled trial. Trials, 2015, 16, 276.	1.6	22
123	The RIG-I-like helicase receptor MDA5 (IFIH1) is involved in the host defense against Candida infections. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 963-974.	2.9	69
124	Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing. Fungal Genetics and Biology, 2015, 75, 64-71.	2.1	34
125	Azole antifungals: 35 years of invasive fungal infection management. Expert Review of Anti-Infective Therapy, 2015, 13, 787-798.	4.4	179
126	Scedosporium apiosermum infection of the "Native―valve: Fungal endocarditis in an orthotopic heart transplant recipient. Medical Mycology Case Reports, 2015, 9, 34-36.	1.3	11

#	Article	IF	CITATIONS
127	Live Imaging of Host-Parasite Interactions in a Zebrafish Infection Model Reveals Cryptococcal Determinants of Virulence and Central Nervous System Invasion. MBio, 2015, 6, e01425-15.	4.1	65
128	Taming Amphotericin B. Bioconjugate Chemistry, 2015, 26, 2021-2024.	3.6	31
129	Cryptococcosis diagnosis and treatment: What do we know now. Fungal Genetics and Biology, 2015, 78, 49-54.	2.1	194
130	Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nature Communications, 2014, 5, 4675.	12.8	76
131	Analysis of the Genome and Transcriptome of Cryptococcus neoformans var. grubii Reveals Complex RNA Expression and Microevolution Leading to Virulence Attenuation. PLoS Genetics, 2014, 10, e1004261.	3.5	336
132	Future strategies for the treatment of cryptococcal meningoencephalitis in pediatric patients. Expert Opinion on Orphan Drugs, 2014, 2, 245-257.	0.8	0
133	The Cryptococcus neoformans Transcriptome at the Site of Human Meningitis. MBio, 2014, 5, e01087-13.	4.1	113
134	Phase 1b Study of New Posaconazole Tablet for Prevention of Invasive Fungal Infections in High-Risk Patients with Neutropenia. Antimicrobial Agents and Chemotherapy, 2014, 58, 5758-5765.	3.2	99
135	Very Low Levels of 25-Hydroxyvitamin D Are Not Associated With Immunologic Changes or Clinical Outcome in South African Patients With HIV-Associated Cryptococcal Meningitis. Clinical Infectious Diseases, 2014, 59, 493-500.	5.8	10
136	Update on Epidemiology of and Preventive Strategies for Invasive Fungal Infections in Cancer Patients. Clinical Infectious Diseases, 2014, 59, S352-S355.	5.8	54
137	Molecular Typing of the Cryptococcus neoformans/Cryptococcus gattii Species Complex. , 2014, , 327-357.		18
138	Inkjet Printing of Amphotericin B onto Biodegradable Microneedles Using Piezoelectric Inkjet Printing. Jom, 2013, 65, 525-533.	1.9	47
139	Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nature Communications, 2013, 4, 1342.	12.8	157
140	Fungal diagnosis: how do we do it and can we do better?. Current Medical Research and Opinion, 2013, 29, 3-11.	1.9	83
141	Brain Inositol Is a Novel Stimulator for Promoting Cryptococcus Penetration of the Blood-Brain Barrier. PLoS Pathogens, 2013, 9, e1003247.	4.7	69
142	Posaconazole Exhibits In Vitro and In Vivo Synergistic Antifungal Activity with Caspofungin or FK506 against Candida albicans. PLoS ONE, 2013, 8, e57672.	2.5	54
143	CX3CR1-dependent renal macrophage survival promotes Candida control and host survival. Journal of Clinical Investigation, 2013, 123, 5035-5051.	8.2	190
144	Toll-like Receptor 1 Polymorphisms Increase Susceptibility to Candidemia. Journal of Infectious Diseases, 2012, 205, 934-943.	4.0	116

#	Article	IF	CITATIONS
145	Cytokine Gene Polymorphisms and the Outcome of Invasive Candidiasis: A Prospective Cohort Study. Clinical Infectious Diseases, 2012, 54, 502-510.	5.8	68
146	The Triple Threat of Cryptococcosis: Itâ \in ${}^{\mathrm{M}}$ s the Body Site, the Strain, and/or the Host. MBio, 2012, 3, .	4.1	23
147	The Impact of the Host on Fungal Infections. American Journal of Medicine, 2012, 125, S39-S51.	1.5	76
148	Comparison and Temporal Trends of Three Groups with Cryptococcosis: HIV-Infected, Solid Organ Transplant, and HIV-Negative/Non-Transplant. PLoS ONE, 2012, 7, e43582.	2.5	161
149	Surfactant Protein D Facilitates Cryptococcus neoformans Infection. Infection and Immunity, 2012, 80, 2444-2453.	2.2	33
150	Human genetic susceptibility to <i>Candida</i> infections. Medical Mycology, 2012, 50, 785-794.	0.7	37
151	IRIS and Fungal Infections: What Have We Learned?. Current Fungal Infection Reports, 2012, 6, 1-10.	2.6	1
152	Invasive Mycoses: Evolving Challenges and Opportunities in Antifungal Therapy (Multimedia Activity). American Journal of Medicine, 2011, 124, S2-S3.	1.5	24
153	Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations. Expert Opinion on Emerging Drugs, 2011, 16, 559-586.	2.4	48
154	Cryptococcus neoformans Requires a Functional Glycolytic Pathway for Disease but Not Persistence in the Host. MBio, 2011, 2, e00103-11.	4.1	89
155	Blood Gene Expression Signatures Predict Invasive Candidiasis. Science Translational Medicine, 2010, 2, 21ra17.	12.4	40
156	Use of Antifungal Combination Therapy: Agents, Order, and Timing. Current Fungal Infection Reports, 2010, 4, 87-95.	2.6	76
157	Trehalose 6â€phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2010, 77, 891-911.	2.5	104
158	Survival Defects of <i>Cryptococcus neoformans</i> Mutants Exposed to Human Cerebrospinal Fluid Result in Attenuated Virulence in an Experimental Model of Meningitis. Infection and Immunity, 2010, 78, 4213-4225.	2.2	47
159	Clinical Practice Guidelines for the Management of Cryptococcal Disease: 2010 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases, 2010, 50, 291-322.	5.8	2,195
160	The Trehalose Synthesis Pathway Is an Integral Part of the Virulence Composite for <i>Cryptococcus gattii</i> . Infection and Immunity, 2009, 77, 4584-4596.	2.2	88
161	Human Dectin-1 Deficiency and Mucocutaneous Fungal Infections. New England Journal of Medicine, 2009, 361, 1760-1767.	27.0	671
162	Metabolic adaptation in <i>Cryptococcus neoformans</i> during early murine pulmonary infection. Molecular Microbiology, 2008, 69, 1456-1475.	2.5	147

#	Article	IF	CITATIONS
163	Revised Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clinical Infectious Diseases, 2008, 46, 1813-1821.	5.8	4,375
164	Resistance to Antifungal Agents: Mechanisms and Clinical Impact. Clinical Infectious Diseases, 2008, 46, 120-128.	5.8	473
165	Defining Responses to Therapy and Study Outcomes in Clinical Trials of Invasive Fungal Diseases: Mycoses Study Group and European Organization for Research and Treatment of Cancer Consensus Criteria. Clinical Infectious Diseases, 2008, 47, 674-683.	5.8	368
166	Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis. PLoS Genetics, 2008, 4, e1000101.	3.5	145
167	Management of Cryptococcosis: How Are We Doing?. PLoS Medicine, 2007, 4, e47.	8.4	9
168	Fatty Acid Synthesis Is Essential for Survival of <i>Cryptococcus neoformans</i> and a Potential Fungicidal Target. Antimicrobial Agents and Chemotherapy, 2007, 51, 3537-3545.	3.2	46
169	Protection against Cryptococcosis by Using a Murine Gamma Interferon-Producing Cryptococcus neoformans Strain. Infection and Immunity, 2007, 75, 1453-1462.	2.2	160
170	Characterization and Regulation of the Trehalose Synthesis Pathway and Its Importance in the Pathogenicity of Cryptococcus neoformans. Infection and Immunity, 2006, 74, 5877-5887.	2.2	144
171	Cost-Effectiveness of Posaconazole Versus Standard Azole Therapy in the Prevention of Invasive Fungal Infections among High-Risk Neutropenic Patients in the U.S Blood, 2006, 108, 3311-3311.	1.4	1
172	Cryptococcus neoformans: A sugar-coated killer with designer genes. FEMS Immunology and Medical Microbiology, 2005, 45, 395-404.	2.7	92
173	Phase I Evaluation of the Safety and Pharmacokinetics of Murine-Derived Anticryptococcal Antibody 18B7 in Subjects with Treated Cryptococcal Meningitis. Antimicrobial Agents and Chemotherapy, 2005, 49, 952-958.	3.2	212
174	Treatment of Non-Aspergillus Moulds in Immunocompromised Patients, with Amphotericin B Lipid Complex. Clinical Infectious Diseases, 2005, 40, S401-S408.	5.8	142
175	Design of Aerosolized Amphotericin B Formulations for Prophylaxis Trials among Lung Transplant Recipients. Clinical Infectious Diseases, 2004, 39, S207-S210.	5.8	28
176	Combination Antifungal Therapy. Antimicrobial Agents and Chemotherapy, 2004, 48, 693-715.	3.2	478
177	Management of invasive mycoses in hematology patients: current approaches. Oncology, 2004, 18, 5-14.	0.5	2
178	Use of newer antifungal therapies in clinical practice: what do the data tell us?. Oncology, 2004, 18, 15-23.	0.5	1
179	Antifungal resistance: the clinical front. Oncology, 2004, 18, 15-22.	0.5	5
180	Voriconazole Treatment for Lessâ€Common, Emerging, or Refractory Fungal Infections. Clinical Infectious Diseases, 2003, 36, 1122-1131.	5.8	643

#	Article	IF	CITATIONS
181	Regulation of cytochrome c oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment. Microbiology (United Kingdom), 2003, 149, 1041-1049.	1.8	33
182	Antifungal pharmacotherapy for invasive mould infections. Expert Opinion on Pharmacotherapy, 2003, 4, 147-164.	1.8	1
183	Cryptococcosis. Infectious Disease Clinics of North America, 2002, 16, 837-874.	5.1	354
184	Antisense repression in Cryptococcus neoformans as a laboratory tool and potential antifungal strategy. Microbiology (United Kingdom), 2002, 148, 213-219.	1.8	44
185	Fungal infections of the bones and joints. Current Infectious Disease Reports, 2001, 3, 450-460.	3.0	18
186	Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Molecular Microbiology, 2001, 39, 166-175.	2.5	319
187	Identification and characterization of the Cryptococcus neoformans phosphomannose isomerase-encoding gene, MAN1, and its impact on pathogenicity. Molecular Microbiology, 2001, 40, 610-620.	2.5	86
188	Cyclic AMP-Dependent Protein Kinase Controls Virulence of the Fungal Pathogen Cryptococcus neoformans. Molecular and Cellular Biology, 2001, 21, 3179-3191.	2.3	310
189	RAS1 regulates filamentation, mating and growth at high temperature of Cryptococcus neoformans. Molecular Microbiology, 2000, 36, 352-365.	2.5	211
190	Identification and characterization of a highly conserved calcineurin binding protein, CBP1/calcipressin, in <i>Cryptococcus neoformans</i> . EMBO Journal, 2000, 19, 3618-3629.	7.8	158
191	Urease as a Virulence Factor in Experimental Cryptococcosis. Infection and Immunity, 2000, 68, 443-448.	2.2	459
192	New potential targets for antifungal development. Expert Opinion on Therapeutic Targets, 2000, 4, 265-296.	1.0	20
193	Association of Plasma Levels of Human Immunodeficiency Virus Type 1 RNA and Oropharyngeal <i>Candida</i> Colonization. Journal of Infectious Diseases, 1999, 180, 534-537.	4.0	62
194	Drug resistance in Cryptococcus neoformans. Drug Resistance Updates, 1999, 2, 259-269.	14.4	95
195	Topoisomerase I Is Essential in Cryptococcus neoformans: Role in Pathobiology and as an Antifungal Target. Genetics, 1999, 152, 167-178.	2.9	71
196	The STE12α Homolog Is Required for Haploid Filamentation But Largely Dispensable for Mating and Virulence in Cryptococcus neoformans. Genetics, 1999, 153, 1601-1615.	2.9	138
197	Morphologic Criteria for the Preliminary Identification of <i>Fusarium, Paecilomyces</i> , and <i>Acremonium</i> Species by Histopathology. American Journal of Clinical Pathology, 1998, 109, 45-54.	0.7	177
198	Cryptococcus neoformans., 1998,,.		642

3

#	Article	IF	CITATIONS
199	Antifungal Resistance Trends Towards the Year 2000. Drugs, 1997, 54, 657-678.	10.9	140
200	Adverse Drug Reactions to Systemic Antifungals Prevention and Management. Drug Safety, 1992, 7, 323-363.	3.2	60
201	Deferoxamine Treatment as a Risk Factor for Zygomycete Infection. Journal of Infectious Diseases, 1989, 159, 151-152.	4.0	28
202	Cryptococcal Meningitis with Normal Cerebrospinal Fluid. Journal of Infectious Diseases, 1989, 160, 912-912.	4.0	15
203	Mycobacterium Avium-intracellulare complex infections in the acquired immunodeficiency syndrome. Journal of Electron Microscopy Technique, 1988, 8, 105-113.	1.1	7
204	Retrospective review of amphotericin B use in a tertiary-care medical center. American Journal of Health-System Pharmacy, 1987, 44, 1353-1357.	1.0	11
205	Potential Value of Cefoperazone in Bacterial Meningitis. Drugs, 1981, 22, 60-64.	10.9	6
206	Fungal Molecular Pathogenesis: What Can It Do and Why Do We Need It?. , 0, , 1-11.		9
207	Cryptococcus neoformans : a Sugar-Coated Killer. , 0, , 279-303.		6
208	Systematics of the Genus Cryptococcus and Its Type Species C. neoformans. , 0, , 1-15.		12
209	The Mating-Type Locus of Cryptococcus: Evolution of Gene Clusters Governing Sex Determination and Sexual Reproduction from the Phylogenomic Perspective. , 0, , 139-149.		7
210	A Role for Mating in Cryptococcal Virulence. , 0, , 167-174.		3
211	Sensing Extracellular Signals in Cryptococcus neoformans. , 0, , 175-187.		2
212	Drug Resistance in <i>Cryptococcus</i> : Epidemiology and Molecular Mechanisms. , 0, , 203-216.		3
213	Signaling Cascades and Enzymes as Cryptococcus Virulence Factors. , 0, , 217-234.		2
214	Environmental Niches for <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> ., 0, , 235-259.		19
215	The History of Cryptococcus and Cryptococcosis. , 0, , 17-26.		5

216 Cryptococcosis in Africa. , 0, , 269-285.

#	Article	IF	CITATIONS
217	Cryptococcosis in Asia. , 0, , 287-297.		3
218	Sexual Reproduction of <i>Cryptococcus gattii</i> : a Population Genetics Perspective. , 0, , 299-311.		2
219	The Emergence of Cryptococcus gattii Infections on Vancouver Island and Expansion in the Pacific Northwest. , 0, , 313-325.		3
220	Hybridization and Its Importance in the Cryptococcus Species Complex. , 0, , 359-370.		2
221	Biosynthesis and Genetics of the Cryptococcus Capsule. , 0, , 27-41.		4
222	Cryptococcus Interactions with Innate Cytotoxic Lymphocytes. , 0, , 417-427.		1
223	Invasion of <i>Cryptococcus</i> into the Central Nervous System. , 0, , 465-471.		6
224	Cryptococcosis in Experimental Animals: Lessons Learned. , 0, , 473-488.		2
225	Veterinary Insights into Cryptococcosis Caused by <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> . , 0, , 489-504.		10
226	Cryptococcosis in Transplant Recipients. , 0, , 505-514.		1
227	Cryptococcosis in AIDS. , 0, , 515-525.		4
228	The Architecture and Antigenic Composition of the Polysaccharide Capsule. , 0, , 43-54.		8
229	Vaccines and Antibody Therapies from Cryptococcus neoformans to Melanoma. , 0, , 537-546.		1
230	Diagnostic Approach Based on Capsular Antigen, Capsule Detection, β-Glucan, and DNA Analysis. , 0, , 547-564.		5
231	Public Health Importance of Cryptococcal Disease: Epidemiology, Burden, and Control. , 0, , 585-593.		6
232	Clinical Perspectives on <i>Cryptococcus neoformans</i> and <i>Cryptococcus gattii</i> : Implications for Diagnosis and Management. , 0, , 595-606.		16
233	Melanin: Structure, Function, and Biosynthesis in Cryptococcus. , 0, , 55-66.		3
234	The Cell Wall of Cryptococcus. , 0, , 67-79.		4

#	Article	IF	CITATIONS
235	Sexual Reproduction of Cryptococcus. , 0, , 81-96.		3
236	Population Structure and Ecology of Cryptococcus neoformans and Cryptococcus gattii. , 0, , 97-111.		5
237	Introduction to the Pathogen. , 0, , 1-27.		3
238	Diagnosis and Laboratory Techniques. , 0, , 381-405.		6
239	Human Cryptococcosis. , 0, , 407-456.		10
240	Therapy of Cryptococcosis. , 0, , 457-518.		3
241	Prevention of Human Infection. , 0, , 519-530.		4
242	Virulence Factors. , 0, , 145-176.		6
243	Specific Immunity and Cytokines. , 0, , 223-269.		3
244	Tissue Responses and Special Topics in Immunity. , 0, , 271-324.		0
245	Virulence Mechanisms of Cryptococcus gattii: Convergence and Divergence. , 0, , 189-201.		Ο
246	C-Protein Signaling Pathways: Regulating Morphogenesis and Virulence of Cryptococcus. , 0, , 151-165.		1
247	Acquired Humoral Immunity to Cryptococcus neoformans. , 0, , 397-408.		0
248	Management of Cryptococcal Meningoencephalitis in Both Developed and Developing Countries. , 0, , 565-584.		1
249	Animal Models and Veterinary Aspects of Cryptococcosis. , 0, , 325-350.		1
250	The Interaction of Cryptococcus neoformans with Host MacroPhages and Neutrophils. , 0, , 371-385.		0
251	Pulmonary Innate and Adaptive Defenses against Cryptococcus. , 0, , 451-464.		0
252	Physical Defenses and Nonspecific Immunity. , 0, , 177-222.		0

#	Article	IF	CITATIONS
253	Intracellular Replication and Exit Strategies. , 0, , 441-450.		1