Pedro Amoros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578439/publications.pdf

Version: 2024-02-01

226 9,815 50 87
papers citations h-index g-index

239 239 239 9857
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Mesoporous silica sorbent with gold nanoparticles for solid-phase extraction of organochlorine pesticides in water samples. Journal of Chromatography A, 2022, 1662, 462729.	1.8	12
2	Assessment of migrating endocrine-disrupting chemicals in bottled acidic juice using type UVM-7 mesoporous silica modified with cyclodextrin. Food Chemistry, 2022, 380, 132207.	4.2	7
3	A \hat{l}^2 -cyclodextrin sorbent based on hierarchical mesoporous silica for the determination of endocrine-disrupting chemicals in urine samples. Journal of Chromatography A, 2022, 1671, 463007.	1.8	5
4	High content and dispersion of Gd in bimodal porous silica: T2 contrast agents under ultra-high magnetic fields. Microporous and Mesoporous Materials, 2022, 336, 111863.	2.2	3
5	A type UVM-7 mesoporous silica with \hat{I}^3 -cyclodextrin for the isolation of three veterinary antibiotics (ofloxacin, norfloxacin, and ciprofloxacin) from different fat-rate milk samples. Journal of Food Composition and Analysis, 2022, 109, 104463.	1.9	3
6	Batch and Flow Synthesis of CeO2 Nanomaterials Using Solid-State Microwave Generators. Molecules, 2022, 27, 2712.	1.7	2
7	Iron-Doped Bimodal Mesoporous Silica Nanomaterials as Sorbents for Solid-Phase Extraction of Perfluoroalkyl Substances in Environmental Water Samples. Nanomaterials, 2022, 12, 1441.	1.9	O
8	Generalized "one-pot―preparative strategy to obtain highly functionalized silica-based mesoporous spherical particles. Microporous and Mesoporous Materials, 2022, 337, 111942.	2.2	4
9	Microwaveâ€Assisted Synthesis of Covalent Organic Frameworks: A Review. ChemSusChem, 2021, 14, 208-233.	3.6	80
10	Enhancing extraction performance of organophosphorus flame retardants in water samples using titanium hierarchical porous silica materials as sorbents. Journal of Chromatography A, 2021, 1639, 461938.	1.8	10
11	Chromogenic Chemodosimeter Based on Capped Silica Particles to Detect Spermine and Spermidine. Nanomaterials, 2021, 11, 818.	1.9	2
12	Nitroarene hydrogenation catalysts based on Pd nanoparticles glued with PDA on inorganic supports: Multivariate Curve Resolution as an useful tool to compare the catalytic activity in multi-step reactions. Applied Catalysis A: General, 2021, 619, 118125.	2.2	2
13	Host-guest interactions for extracting antibiotics with a \hat{I}^3 -cyclodextrin poly(glycidyl-co-ethylene) Tj ETQq $1\ 1\ 0.78$	34314 rgB 2.9	T /Overlock 1
14	Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment. Journal of Controlled Release, 2021, 337, 14-26.	4.8	28
15	Cyclodextrins as a Key Piece in Nanostructured Materials: Quantitation and Remediation of Pollutants. Nanomaterials, 2021, 11, 7.	1.9	13
16	Selective hydrogenation of nitroderivatives over Au/TiO2/UVM-7 composite catalyst. Catalysis Today, 2020, 355, 893-902.	2.2	6
17	Precatalyst or dosing-device? The [Pd2 $\{\hat{l}\frac{1}{4}$ -(C6H4) PPh2 $\}2\{\hat{l}\frac{1}{4}$ -O2C(C6H5) $\}2$] complex anchored on a carboxypolystyrene polymer as an effective supplier of palladium catalytically active nanoparticles for the Suzuki-Miyaura reaction. Journal of Catalysis, 2020, 381, 26-37.	3.1	8
18	Use of Silica Based Materials as Modulators of the Lipase Catalyzed Hydrolysis of Fats under Simulated Duodenal Conditions. Nanomaterials, 2020, 10, 1927.	1.9	4

#	Article	IF	CITATIONS
19	Peptideâ€Capped Mesoporous Nanoparticles: Toward a more Efficient Internalization of Alendronate. ChemistrySelect, 2020, 5, 3618-3625.	0.7	2
20	Recent Progress of Microwave-Assisted Synthesis of Silica Materials. Nanomaterials, 2020, 10, 1092.	1.9	42
21	Comparison of silica-based materials for organophosphorus pesticides sampling and occupational risk assessment. Analytica Chimica Acta, 2020, 1110, 26-34.	2.6	12
22	Bimodal porous silica nanomaterials as sorbents for an efficient and inexpensive determination of aflatoxin M1 in milk and dairy products. Food Chemistry, 2020, 333, 127421.	4.2	18
23	Highly Active Hydrogenation Catalysts Based on Pd Nanoparticles Dispersed along Hierarchical Porous Silica Covered with Polydopamine as Interfacial Glue. Catalysts, 2020, 10, 449.	1.6	9
24	In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochimica Acta, 2020, 187, 301.	2.5	18
25	A new proposal for the determination of polychlorinated biphenyls in environmental water by using host-guest adsorption. Science of the Total Environment, 2020, 724, 138266.	3.9	13
26	A poly(glycidyl-co-ethylene dimethacrylate) nanohybrid modified with \hat{l}^2 -cyclodextrin as a sorbent for solid-phase extraction of phenolic compounds. Mikrochimica Acta, 2019, 186, 615.	2.5	12
27	Control of the pore wall thickness and thermal stability in low-cost bimodal porous silicas. Polyhedron, 2019, 170, 544-552.	1.0	3
28	Not always what closes best opens better: mesoporous nanoparticles capped with organic gates. Science and Technology of Advanced Materials, 2019, 20, 699-709.	2.8	3
29	Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy. Nanoscale Advances, 2019, 1, 2537-2545.	2.2	14
30	Extraction of aflatoxins by using mesoporous silica (type UVM-7), and their quantitation by HPLC-MS. Mikrochimica Acta, 2019, 186, 792.	2.5	20
31	Amphetamine-type stimulants analysis in oral fluid based on molecularly imprinting extraction. Analytica Chimica Acta, 2019, 1052, 73-83.	2.6	42
32	Atrane complexes chemistry as a tool for obtaining trimodal UVM-7-like porous silica. Journal of Coordination Chemistry, 2018, 71, 776-785.	0.8	6
33	Understanding the role of Ti-rich domains in the stabilization of gold nanoparticles on mesoporous silica-based catalysts. Journal of Catalysis, 2018, 360, 187-200.	3.1	4
34	11B-MAS NMR approach to the boron adsorption mechanism on a glucose-functionalised mesoporous silica matrix. Microporous and Mesoporous Materials, 2018, 266, 232-241.	2.2	14
35	Refractive index controlled by film morphology and free carrier density in undoped ZnO through sol-pH variation. Optik, 2018, 158, 1139-1146.	1.4	28
36	Layered-Expanded Mesostructured Silicas: Generalized Synthesis and Functionalization. Nanomaterials, 2018, 8, 817.	1.9	4

#	Article	IF	CITATIONS
37	A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction. Journal of Catalysis, 2018, 367, 283-295.	3.1	29
38	Design, characterization and comparison of materials based on \hat{l}^2 and \hat{l}^3 cyclodextrin covalently connected to microporous silica for environmental analysis. Journal of Chromatography A, 2018, 1563, 10-19.	1.8	17
39	Solid-phase extraction of phospholipids using mesoporous silica nanoparticles: application to human milk samples. Analytical and Bioanalytical Chemistry, 2018, 410, 4847-4854.	1.9	12
40	2D and 3D mixed M ^{II} /Cu ^{II} metal–organic frameworks (M = Ca and Sr) with <i>N</i> , <i>N</i> ,ê2-2,6-pyridinebis(oxamate) and oxalate: preparation and magneto-structural study. Dalton Transactions, 2018, 47, 11539-11553.	1.6	15
41	Study of silica-structured materials as sorbents for organophosphorus pesticides determination in environmental water samples. Talanta, 2018, 189, 560-567.	2.9	39
42	Mesoporous silica microparticles gated with a bulky azo derivative for the controlled release of dyes/drugs in colon. Royal Society Open Science, 2018, 5, 180873.	1.1	6
43	Reversible solvatomagnetic switching in a single-ion magnet from an entatic state. Chemical Science, 2017, 8, 3694-3702.	3.7	67
44	Fluorogenic Sensing of Carcinogenic Bisphenol A using Aptamerâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2017, 23, 8581-8584.	1.7	33
45	Relationship between bulk phase, near surface and outermost atomic layer of VPO catalysts and their catalytic performance in the oxidative dehydrogenation of ethane. Journal of Catalysis, 2017, 354, 236-249.	3.1	22
46	Organo-silica hybrid capillary monolithic column with mesoporous silica particles for separation of small aromatic molecules. Mikrochimica Acta, 2017, 184, 3799-3808.	2.5	17
47	Mesoporous Materials Incorporating Metal Triflates. , 2016, , 219-271.		1
48	Protective effect of mesoporous silica particles on encapsulated folates. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 105, 9-17.	2.0	15
49	Stability of different mesoporous silica particles during an inÂvitro digestion. Microporous and Mesoporous Materials, 2016, 230, 196-207.	2.2	23
50	Comparison of the solid-phase extraction efficiency of a bounded and an included cyclodextrin-silica microporous composite for polycyclic aromatic hydrocarbons determination in water samples. Talanta, 2016, 156-157, 95-103.	2.9	30
51	Evaluation of a Cyclodextrin-silica Hybrid Microporous Composite for the Solid-phase Extraction of Polycyclic Aromatic Hydrocarbons. Analytical Sciences, 2016, 32, 659-665.	0.8	9
52	Targeting Innate Immunity with dsRNAâ€Conjugated Mesoporous Silica Nanoparticles Promotes Antitumor Effects on Breast Cancer Cells. Chemistry - A European Journal, 2016, 22, 1582-1586.	1.7	30
53	Insights into the Dynamics of Grotthuss Mechanism in a Proton-Conducting Chiral <i>bio</i> MOF. Chemistry of Materials, 2016, 28, 4608-4615.	3.2	105
54	Encapsulation of folic acid in different silica porous supports: A comparative study. Food Chemistry, 2016, 196, 66-75.	4.2	38

#	Article	IF	Citations
55	Enlarged pore size in nanoparticulated bimodal porous silicas: Improving accessibility. Microporous and Mesoporous Materials, 2016, 221, 150-158.	2.2	9
56	Caspase 3 Targeted Cargo Delivery in Apoptotic Cells Using Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2015, 21, 15506-15510.	1.7	14
57	High-Temperature Stable Gold Nanoparticle Catalysts for Application under Severe Conditions: The Role of TiO ₂ Nanodomains in Structure and Activity. ACS Catalysis, 2015, 5, 1078-1086.	5. 5	34
58	Gated Mesoporous Silica Nanoparticles for the Controlled Delivery of Drugs in Cancer Cells. Langmuir, 2015, 31, 3753-3762.	1.6	104
59	Heterogeneous Gold Catalyst: Synthesis, Characterization, and Application in 1,4-Addition of Boronic Acids to Enones. ACS Catalysis, 2015, 5, 5060-5067.	5 . 5	19
60	Poly(N-isopropylacrylamide)-gated Fe3O4/SiO2 core shell nanoparticles with expanded mesoporous structures for the temperature triggered release of lysozyme. Colloids and Surfaces B: Biointerfaces, 2015, 135, 652-660.	2.5	48
61	Hydrolysis of DCNP (a Tabun mimic) catalysed by mesoporous silica nanoparticles. Microporous and Mesoporous Materials, 2015, 217, 30-38.	2.2	7
62	Lowâ€Cost Synthesis of Bimodal Mesoporous Silicaâ€Based Materials by Pseudomorphic Transformation. ChemPlusChem, 2015, 80, 1014-1028.	1.3	8
63	Ceramic foam supported active materials for boron remediation in water. Desalination, 2015, 374, 10-19.	4.0	3
64	Coordinating and hydrogen bonding ability of a bifunctional 2D paddle-wheel copper(II) coordination polymer. Polyhedron, 2015, 87, 220-225.	1.0	3
65	Determination of phenolic compounds in air by using cyclodextrin-silica hybrid microporous composite samplers. Talanta, 2015, 134, 560-567.	2.9	16
66	Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 2015, 51, 1414-1416.	2.2	33
67	Modulation of folic acid bioaccessibility by encapsulation in pH-responsive gated mesoporous silica particles. Microporous and Mesoporous Materials, 2015, 202, 124-132.	2.2	24
68	Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. International Journal of Nanomedicine, 2014, 9, 2597.	3.3	26
69	Comparative hydroamination of aniline and substituted anilines with styrene on different zeolites, triflate based catalysts and their physical mixtures. Applied Catalysis A: General, 2014, 474, 230-235.	2.2	8
70	Enzymeâ€Responsive Intracellularâ€Controlled Release Using Silica Mesoporous Nanoparticles Capped with εâ€Polyâ€ <scp>L</scp> â€lysine. Chemistry - A European Journal, 2014, 20, 5271-5281.	1.7	78
71	Chromoâ€Fluorogenic Detection of Nitroaromatic Explosives by Using Silica Mesoporous Supports Gated with Tetrathiafulvalene Derivatives. Chemistry - A European Journal, 2014, 20, 855-866.	1.7	23
72	Mesoporous iron phosphate/phosphonate hybrid materials. Microporous and Mesoporous Materials, 2014, 187, 14-22.	2.2	13

#	Article	IF	CITATIONS
73	New multicomponent catalysts for the selective aerobic oxidative condensation of benzylamine to N-benzylidenebenzylamine. Catalysis Science and Technology, 2014, 4, 4340-4355.	2.1	21
74	Cathepsinâ€B Induced Controlled Release from Peptideâ€Capped Mesoporous Silica Nanoparticles. Chemistry - A European Journal, 2014, 20, 15309-15314.	1.7	50
75	Confined growth of carbon nanoforms in one-dimension by fusion of anthracene rings inside the pores of MCM-41. Nanoscale, 2014, 6, 7981-7990.	2.8	6
76	Temperature-controlled release by changes in the secondary structure of peptides anchored onto mesoporous silica supports. Chemical Communications, 2014, 50, 3184-3186.	2.2	58
77	Combination of silica nanoparticles with hydroxyapatite reinforces poly (<scp>l</scp> -lactide acid) scaffolds without loss of bioactivity. Journal of Bioactive and Compatible Polymers, 2014, 29, 15-31.	0.8	11
78	Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie - International Edition, 2014, 53, 12629-12633.	7.2	63
79	Selective, Highly Sensitive, and Rapid Detection of Genomic DNA by Using Gated Materials: <i>Mycoplasma</i> Detection. Angewandte Chemie - International Edition, 2013, 52, 8938-8942.	7.2	51
80	Magnetic and structural approach for understanding the electrochemical behavior of LiNi0.33Co0.33Mn0.33O2 positive electrode material. Electrochimica Acta, 2013, 111, 567-574.	2.6	21
81	Selective and Sensitive Chromofluorogenic Detection of the Sulfite Anion in Water Using Hydrophobic Hybrid Organic–Inorganic Silica Nanoparticles. Angewandte Chemie - International Edition, 2013, 52, 13712-13716.	7.2	63
82	Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry A, 2013, 1, 3561.	5.2	48
83	Enzymeâ€Responsive Silica Mesoporous Supports Capped with Azopyridinium Salts for Controlled Delivery Applications. Chemistry - A European Journal, 2013, 19, 1346-1356.	1.7	39
84	Enhanced Efficacy and Broadening of Antibacterial Action of Drugs via the Use of Capped Mesoporous Nanoparticles. Chemistry - A European Journal, 2013, 19, 11167-11171.	1.7	31
85	Selective, Sensitive, and Rapid Analysis with Lateralâ€Flow Assays Based on Antibodyâ€Gated Dyeâ€Delivery Systems: The Example of Triacetone Triperoxide. Chemistry - A European Journal, 2013, 19, 4117-4122.	1.7	43
86	Tetrathiafulvalene-Capped Hybrid Materials for the Optical Detection of Explosives. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1538-1543.	4.0	28
87	Glucose-triggered release using enzyme-gated mesoporous silica nanoparticles. Chemical Communications, 2013, 49, 6391.	2.2	95
88	Organic–Inorganic Hybrid Mesoporous Materials as Regenerable Sensing Systems for the Recognition of Nitroaromatic Explosives. ChemPlusChem, 2013, 78, 684-694.	1.3	15
89	An aptamer-gated silica mesoporous material for thrombin detection. Chemical Communications, 2013, 49, 5480.	2.2	89
90	Hyaluronic Acid–Silica Nanohybrid Gels. Biomacromolecules, 2013, 14, 4217-4225.	2.6	28

#	Article	IF	Citations
91	Antibodyâ€Capped Mesoporous Nanoscopic Materials: Design of a Probe for the Selective Chromoâ€Fluorogenic Detection of Finasteride. ChemistryOpen, 2012, 1, 251-259.	0.9	24
92	Interconnected mesopores and high accessibility in UVM-7-like silicas. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	23
93	Samplers for VOCs in air based on cyclodextrin–silica hybrid microporous solid phases. Analyst, The, 2012, 137, 1275.	1.7	13
94	Low-cost materials for boron adsorption from water. Journal of Materials Chemistry, 2012, 22, 25362.	6.7	23
95	Design of Enzyme-Mediated Controlled Release Systems Based on Silica Mesoporous Supports Capped with Ester-Glycol Groups. Langmuir, 2012, 28, 14766-14776.	1.6	43
96	Delivery Modulation in Silica Mesoporous Supports via Alkyl Chain Pore Outlet Decoration. Langmuir, 2012, 28, 2986-2996.	1.6	24
97	Azobenzene Polyesters Used as Gateâ€Like Scaffolds in Nanoscopic Hybrid Systems. Chemistry - A European Journal, 2012, 18, 13068-13078.	1.7	22
98	A Photoactivated Molecular Gate. Chemistry - A European Journal, 2012, 18, 12218-12221.	1.7	35
99	Amidase-responsive controlled release of antitumoral drug into intracellular media using gluconamide-capped mesoporous silica nanoparticles. Nanoscale, 2012, 4, 7237.	2.8	39
100	Dual Enzyme‶riggered Controlled Release on Capped Nanometric Silica Mesoporous Supports. ChemistryOpen, 2012, 1, 17-20.	0.9	59
101	Pore Length Effect on Drug Uptake and Delivery by Mesoporous Silicas. ChemPlusChem, 2012, 77, 817-831.	1.3	14
102	Tetraethylorthosilicate as molecular precursor to the formation of amorphous silica networks. A DFT-SCRF study of the base catalyzed hydrolysis. Journal of Molecular Modeling, 2012, 18, 3301-3310.	0.8	12
103	Total oxidation of VOCs on Au nanoparticles anchored on Co doped mesoporous UVM-7 silica. Chemical Engineering Journal, 2012, 187, 391-400.	6.6	44
104	Efficient Sc triflate mesoporous-based catalysts for the synthesis of $4,4\hat{a}\in^2$ -methylenedianiline from aniline and 4-aminobenzylalcohol. Journal of Catalysis, 2012, 287, 76-85.	3.1	9
105	The Li NiO.2MnO.2CoO.6O2 electrode materials: A structural and magnetic study. Materials Research Bulletin, 2012, 47, 1004-1009.	2.7	12
106	Reversible Solvatomagnetic Switching in a Spongelike Manganese(II)–Copper(II) 3D Open Framework with a Pillared Square/Octagonal Layer Architecture. Chemistry - A European Journal, 2012, 18, 1608-1617.	1.7	86
107	Enzymeâ€Mediated Controlled Release Systems by Anchoring Peptide Sequences on Mesoporous Silica Supports. Angewandte Chemie - International Edition, 2011, 50, 2138-2140.	7.2	197
108	Finely Tuned Temperatureâ€Controlled Cargo Release Using Paraffinâ€Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2011, 50, 11172-11175.	7.2	143

#	Article	IF	Citations
109	Energy of excitons and acceptor–exciton complexes to explain the origin of ultraviolet photoluminescence in ZnO quantum dots embedded in a SiO2 matrix. Solid State Communications, 2011, 151, 822-825.	0.9	7
110	Mesoporous Tin-Triflate Based Catalysts for Transesterification of Sunflower Oil. Topics in Catalysis, 2010, 53, 763-772.	1.3	6
111	Hierarchical porous carbon with designed pore architecture and study of its adsorptive properties. Solid State Sciences, 2010, 12, 15-25.	1.5	16
112	Fatty Acid Carboxylate―and Anionic Surfactant ontrolled Delivery Systems That Use Mesoporous Silica Supports. Chemistry - A European Journal, 2010, 16, 10048-10061.	1.7	15
113	Controlled Delivery Using Oligonucleotideâ€Capped Mesoporous Silica Nanoparticles. Angewandte Chemie - International Edition, 2010, 49, 7281-7283.	7.2	234
114	Synthesis, characterization and catalytic behavior of AlTf/UVM-7 as new green catalysts for the glycols etherification reactions. Applied Catalysis A: General, 2010, 372, 58-66.	2.2	7
115	AlTf-UVM-7â€"Highly active catalysts for the synthesis of long chain symmetrical ethers and non-ionic surfactant structures. Chemical Engineering Journal, 2010, 161, 363-370.	6.6	7
116	Enzyme-Responsive Intracellular Controlled Release Using Nanometric Silica Mesoporous Supports Capped with "Saccharides― ACS Nano, 2010, 4, 6353-6368.	7.3	286
117	Stable anchoring of dispersed gold nanoparticles on hierarchic porous silica-based materials. Journal of Materials Chemistry, 2010, 20, 6780.	6.7	19
118	Borateâ€Driven Gatelike Scaffolding Using Mesoporous Materials Functionalised with Saccharides. Chemistry - A European Journal, 2009, 15, 6877-6888.	1.7	78
119	Mesoporous Hybrid Materials Containing Nanoscopic "Binding Pockets―for Colorimetric Anion Signaling in Water by using Displacement Assays. Chemistry - A European Journal, 2009, 15, 9024-9033.	1.7	42
120	Enzymeâ€Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie - International Edition, 2009, 48, 5884-5887.	7.2	236
121	The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie - International Edition, 2009, 48, 8519-8522.	7.2	123
122	Glycosidase enzymes stabilization through immobilization onto nanoparticulated bimodal organosilicas. New Biotechnology, 2009, 25, S146.	2.4	1
123	Synthesis, characterization and catalytic behavior of SnTf/MCM-41 and SnTf/UVM-7 as new green catalysts for etherification reactions. Journal of Materials Science, 2009, 44, 6693-6700.	1.7	12
124	Metal Triflates Incorporated in Mesoporous Catalysts for Green Synthesis of Fine Chemicals. Topics in Catalysis, 2009, 52, 571-578.	1.3	8
125	Optical properties of exciton confinement in spherical ZnO quantum dots embedded in matrix. Superlattices and Microstructures, 2009, 46, 907-916.	1.4	20
126	ZnO nanoparticles embedded in UVM-7-like mesoporous silica materials: Synthesis and characterization. Physica E: Low-Dimensional Systems and Nanostructures, 2009, 42, 25-31.	1.3	17

#	Article	IF	Citations
127	Mesoporous aluminum phosphite. Journal of Solid State Chemistry, 2009, 182, 2122-2129.	1.4	7
128	pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports. Journal of the American Chemical Society, 2009, 131, 6833-6843.	6.6	367
129	Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 2009, 131, 14075-14080.	6.6	235
130	Biomimetic chitosan-mediated synthesis in heterogeneous phase of bulk and mesoporous silica nanoparticles. Chemical Communications, 2009, , 2694.	2.2	36
131	A Mesoporous 3D Hybrid Material with Dual Functionality for Hg ²⁺ Detection and Adsorption. Chemistry - A European Journal, 2008, 14, 8267-8278.	1.7	123
132	A Metallacryptandâ€Based Manganese(II)–Cobalt(II) Ferrimagnet with a Threeâ€Dimensional Honeycomb Openâ€Framework Architecture. Angewandte Chemie - International Edition, 2008, 47, 4211-4216.	7.2	41
133	Thalassiosira pseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material. Carbon, 2008, 46, 297-304.	5.4	47
134	Theoretical study of oligomeric alumatranes present in the chemistry of materials from micro to mesoporous molecular sieves and alumina composites. Computational and Theoretical Chemistry, 2008, 850, 94-104.	1.5	6
135	Nano-sized mesoporous carbon particles with bimodal pore system and semi-crystalline porous walls. Materials Letters, 2008, 62, 2935-2938.	1.3	8
136	Expanding the atrane route: Generalized surfactant-free synthesis of mesoporous nanoparticulated xerogels. Solid State Sciences, 2008, 10, 587-601.	1.5	18
137	Nanoparticulated Silicas with Bimodal Porosity: Chemical Control of the Pore Sizes. Inorganic Chemistry, 2008, 47, 8267-8277.	1.9	63
138	Hybrid materials with nanoscopic anion-binding pockets for the colorimetric sensing of phosphate in water using displacement assays. Chemical Communications, 2008, , 3639.	2.2	35
139	Dual Aperture Control on pH- and Anion-Driven Supramolecular Nanoscopic Hybrid Gate-like Ensembles. Journal of the American Chemical Society, 2008, 130, 1903-1917.	6.6	220
140	Mesosynthesis of ZnO–SiO ₂ porous nanocomposites with low-defect ZnO nanometric domains. Nanotechnology, 2008, 19, 225603.	1.3	25
141	Nanoscopic hybrid systems with a polarity-controlled gate-like scaffolding for the colorimetric signalling of long-chain carboxylates. Chemical Communications, 2007, , 1957-1959.	2.2	80
142	Nanosized Mesoporous Silica Coatings on Ceramic Foams:Â New Hierarchical Rigid Monoliths. Chemistry of Materials, 2007, 19, 1082-1088.	3.2	24
143	Photochemical and Chemical Twoâ€Channel Control of Functional Nanogated Hybrid Architectures. Advanced Materials, 2007, 19, 2228-2231.	11.1	160
144	Molecular precursors of mesostructured silica materials in the atrane route: A DFT/GIAO/NBO theoretical study. Computational and Theoretical Chemistry, 2007, 822, 89-102.	1.5	13

#	Article	IF	Citations
145	New heterogeneous catalysts for greener routes in the synthesis of fine chemicals. Journal of Catalysis, 2007, 251, 388-399.	3.1	22
146	Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chemical Communications, 2006, , 2239-2241.	2.2	72
147	Ordered mesoporous silicas as host for the incorporation and aggregation of octanuclear nickel(ii) single-molecule magnets: a bottom-up approach to new magnetic nanocomposite materials. Journal of Materials Chemistry, 2006, 16, 2702-2714.	6.7	36
148	Supramolecular capping-ligand effect of lamellar silica mesostructures for the one-pot synthesis of highly dispersed ZnO nanoparticles. Nanotechnology, 2006, 17, 4456-4463.	1.3	8
149	Selective oxidative activation of isobutane on a novel vanadium-substituted bimodal mesoporous oxide V-UVM-7. Catalysis Today, 2006, 117, 180-186.	2.2	24
150	Bases for the synthesis of nanoparticulated silicas with bimodal hierarchical porosity. Solid State Sciences, 2006, 8, 940-951.	1.5	47
151	New Methods for Anion Recognition and Signaling Using Nanoscopic Gatelike Scaffoldings. Angewandte Chemie - International Edition, 2006, 45, 6661-6664.	7.2	107
152	High-Zirconium-Content Nano-Sized Bimodal Mesoporous Silicas. European Journal of Inorganic Chemistry, 2006, 2006, 2572-2581.	1.0	31
153	One-Pot Synthesis of a New High-Aluminium-Content Super-Microporous Aluminosilicate. European Journal of Inorganic Chemistry, 2006, 2006, 3147-3151.	1.0	7
154	X-ray diffraction line broadening on vibrating dry-milled Two Crows sepiolite. Clays and Clay Minerals, 2006, 54, 390-401.	0.6	10
155	Epoxidation of dibenzocycloalkenes on Ti–Ge-MCM-41 and Ti-SBA-15 catalysts. Microporous and Mesoporous Materials, 2005, 81, 115-124.	2.2	21
156	Rational Design of a Chromo- and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates. Journal of the American Chemical Society, 2005, 127, 184-200.	6.6	253
157	Scale-up low-cost synthesis of bimodal mesoporous silicas. Solid State Sciences, 2005, 7, 415-421.	1.5	18
158	Silica-based macrocellular foam monoliths with hierarchical trimodal pore systems. Solid State Sciences, 2005, 7, 405-414.	1.5	13
159	Host Solids Containing Nanoscale Anion-Binding Pockets and Their Use in Selective Sensing Displacement Assays. Angewandte Chemie - International Edition, 2005, 44, 2918-2922.	7.2	88
160	Crystalline microstructure of sepiolite influenced by grinding. Journal of Applied Crystallography, 2005, 38, 888-899.	1.9	21
161	Preparation of multi-nanocrystalline transition metal oxide (TiO2–NiTiO3) mesoporous thin films. New Journal of Chemistry, 2005, 29, 141-144.	1.4	26
162	Anthrylmethylamine functionalised mesoporous silica-based materials as hybrid fluorescent chemosensors for ATP. Journal of Materials Chemistry, 2005, 15, 2721.	6.7	90

#	Article	IF	CITATIONS
163	New Chromogenic Probes into Nanoscopic Pockets in Enhanced Sensing Protocols for Amines in Aqueous Environments. Organic Letters, 2005, 7, 5469-5472.	2.4	36
164	Hierarchical bimodal porous silicas and organosilicas for enzyme immobilization. Journal of Materials Chemistry, 2005, 15, 3859.	6.7	66
165	Enhanced manganese content in Mn-MCM-41 mesoporous silicas. European Physical Journal Special Topics, 2005, 123, 65-69.	0.2	0
166	Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica. Advanced Materials, 2004, 16, 1783-1786.	11.1	124
167	Direct oxidation of isobutane to methacrolein over V-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 43-47.	2.2	23
168	One-Pot Synthesis of Superparamagnetic CoO-MCM-41 Nanocomposites with Uniform and Highly Dispersed Magnetic Nanoclusters. European Journal of Inorganic Chemistry, 2004, 2004, 1799-1803.	1.0	9
169	The First Pure Mesoporous Aluminium Phosphonates and Diphosphonatesâ^' New Hybrid Porous Materials. European Journal of Inorganic Chemistry, 2004, 2004, 1804-1807.	1.0	53
170	Heterogeneous Oxidation of Pyrimidine and Alkyl Thioethers in Ionic Liquids over Mesoporous Ti or Ti/Ge Catalysts. Chemistry - A European Journal, 2004, 10, 4640-4646.	1.7	37
171	Oxidative dehydrogenation of isobutane over Co-MCM-41 catalysts. Catalysis Today, 2004, 91-92, 127-130.	2.2	22
172	High Cobalt Content Mesoporous Silicas. Chemistry of Materials, 2004, 16, 2805-2813.	3.2	55
173	S+I-Ionic Formation Mechanism to New Mesoporous Aluminum Phosphonates and Diphosphonates. Chemistry of Materials, 2004, 16, 4359-4372.	3.2	73
174	Efficient boron removal by using mesoporous matrices grafted with saccharides. Chemical Communications, 2004, , 2198-2199.	2.2	37
175	Toward the Development of Ionically Controlled Nanoscopic Molecular Gates. Journal of the American Chemical Society, 2004, 126, 8612-8613.	6.6	225
176	Mn 12 single-molecule magnets incorporated into mesoporous MCM-41 silica. Polyhedron, 2003, 22, 2395-2400.	1.0	19
177	Large monolithic silica-based macrocellular foams with trimodal pore system. Chemical Communications, 2003, , 1448-1449.	2.2	46
178	Incorporation of Mn12single molecule magnets into mesoporous silica. Journal of Materials Chemistry, 2003, 13, 3089-3095.	6.7	49
179	Surfactant-Assisted Synthesis of the SBA-8 Mesoporous Silica by Using Nonrigid Commercial Alkyltrimethyl Ammonium Surfactants. Chemistry of Materials, 2002, 14, 2637-2643.	3.2	35
180	Atrane Precursors in the One-Pot Surfactant-Assisted Synthesis of High Zirconium Content Porous Silicas. Chemistry of Materials, 2002, 14, 5015-5022.	3.2	58

#	Article	IF	CITATIONS
181	A new method for fluoride determination by using fluorophores and dyes anchored onto MCM-41Electronic supplementary information (ESI) available: IR spectra, SEM images, X-ray diffraction patterns and TG/TD analysis. See http://www.rsc.org/suppdata/cc/b1/b111128k/. Chemical Communications, 2002, , 562-563.	2.2	80
182	Improving epoxide production using Ti-UVM-7 porous nanosized catalysts. New Journal of Chemistry, 2002, 26, 1093-1095.	1.4	26
183	Silica-based powders and monoliths with bimodal pore systemsElectronic supplementary information (ESI) available: UV–Vis spectrum of sample 3. See http://www.rsc.org/suppdata/cc/b1/b110883b/. Chemical Communications, 2002, , 330-331.	2.2	152
184	Hierarchical Porous Nanosized Organosilicas. Chemistry of Materials, 2002, 14, 4502-4504.	3.2	42
185	Synthesis and Characterization of SiC/MC/C Ceramics (M = Ti, Zr, Hf) Starting from Totally Non-oxidic Precursors. Chemistry of Materials, 2002, 14, 1585-1590.	3.2	41
186	High rate of sustained virological response after a 48 weeks course of interferon (IFN) plus ribavirin in chronic hepatitis C relapsers. Results of a randomised trial. Journal of Hepatology, 2002, 36, 242.	1.8	0
187	Ordered mesoporous materials: composition and topology control through chemistry. Solid State Sciences, 2001, 3, 1157-1163.	0.8	22
188	Very high titanium content mesoporous silicas. Chemical Communications, 2001, , 309-310.	2.2	43
189	Crystal structure of a new polytype in the V–P–O system: is ω-VOPO4 a dynamically stabilised metastable network?. Journal of Physics and Chemistry of Solids, 2001, 62, 1393-1399.	1.9	24
190	Ordered Mesoporous Silicon Oxynitrides. Advanced Materials, 2001, 13, 192-195.	11.1	66
191	Enhanced surface area in thermally stable pure mesoporous TiO2. Solid State Sciences, 2000, 2, 513-518.	1.5	97
192	Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2000, 2, 405-420.	1.5	208
193	Surfactant-Assisted Synthesis of Mesoporous Alumina Showing Continuously Adjustable Pore Sizes. Advanced Materials, 1999, 11, 379-381.	11.1	241
194	Towards the Loewenstein limit (Si/Al=1) in thermally stable mesoporous aluminosilicates. Chemical Communications, 1999, , 1679-1680.	2.2	29
195	Tuning the pore size from micro- to meso-porous in thermally stable aluminophosphates. Chemical Communications, 1999, , 333-334.	2.2	30
196	New trends in V–P–O solids. Current Opinion in Solid State and Materials Science, 1999, 4, 123-131.	5.6	36
197	Interface Charge Density Matching as Driving Force for New Mesostructured Oxovanadium Phosphates with Hexagonal Structure, [CTA]xVOPO4·zH2O. Chemistry of Materials, 1999, 11, 1446-1454.	3.2	55
198	Synthesis of a New Mesostructured Lamellar Oxovanadium Phosphate Assembled through an S+X-IO Mechanism. Inorganic Chemistry, 1999, 38, 4243-4248.	1.9	13

#	Article	IF	CITATIONS
199	Supramolecular self-assembling in mesostructured materials through charge tuning in the inorganic phase. Chemical Communications, 1998, , 1883-1884.	2.2	10
200	Prediction of Magnetic Properties in Oxovanadium(IV) Phosphates:Â The Role of the Bridging PO4Anions. Inorganic Chemistry, 1998, 37, 3167-3174.	1.9	46
201	Synthesis and Crystal Structure of a Novel Lamellar Barium Derivative: Ba(VOPO4)2·4H2O. Synthetic Pathways for Layered Oxovanadium Phosphate Hydrates M(VOPO4)2·nH2O. Inorganic Chemistry, 1997, 36, 3414-3421.	1.9	55
202	Synthetic Strategies To Obtain Vâ^'Pâ^'O Open Frameworks Containing Organic Species as Structural Directing Agents. Crystal Structure of the V(IV)â^'Fe(III) Bimetallic Phosphate [H3N(CH2)2NH3]2[H3N(CH2)2NH2][FeIII(H2O)2(VIVO)8(OH)4(HPO4)4(PO4)4]·4H2O. Inorganic Chemistry, 1996, 35, 5613-5621.	1.9	29
203	Synthetic Pathways for New Tubular Transition Metal Hydroxo- and Fluoro-Selenites: Crystal Structures ofM12(X)2(SeO3)8(OH)6(M=Co2+,Ni2+;X= OHâ^'). Journal of Solid State Chemistry, 1996, 126, 169-176.	1.4	17
204	Hydrothermal Synthesis and Structure of Nickel(II) Metavanadate Monohydrate, NiV2O6.H2O. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 552-555.	0.4	2
205	Non-stoichiometric tubular nickel(II) hydroxyarsenates of the dumortierite family: crystal structure and topochemical thermal reduction of Ni12+xH6–x(AsO4)8(OH)6(x= 1.16 and 1.33). Journal of Materials Chemistry, 1995, 5, 917-925.	6.7	12
206	Topotactic Intercalation of Water and Pyridine into Co(H2PO2)2.cntdot.nH2O (0 .ltoreq. n .ltoreq.) Tj ETQq0 0 0 Inorganic Chemistry, 1994, 33, 1220-1226.	rgBT /Ove 1.9	rlock 10 Tf 50 7
207	Ab Initio Crystal Structure Determination of VO(H2PO2)2.cntdot.H2O from X-ray and Neutron Powder Diffraction Data. A Monodimensional Vanadium(IV) Hypophosphite. Inorganic Chemistry, 1994, 33, 2607-2613.	1.9	17
208	X-ray powder diffraction data for some transition metal phosphites and hypophosphites. Powder Diffraction, 1994, 9, 15-20.	0.4	1
209	Synthesis and Crystal Structure of a Tubular Hydroxyphosphite: Zn11â-¡(HPO3)8(OH)6. Journal of Solid State Chemistry, 1993, 107, 250-257.	1.4	53
210	New tubular transition metal oxoanionic derivatives: a systematic approach to condensed phases of the dumortierite family. Solid State Ionics, 1993, 63-65, 87-95.	1.3	7
211	Transition metal derivatives of low oxidation state phosphorus oxoacids: synthetic pathways and structural studies. Solid State Ionics, 1993, 63-65, 96-109.	1.3	7
212	Novel crystalline microporous transition-metal phosphites $M11(HPO3)8(OH)6$ (M = Zn, Co, Ni). X-ray powder diffraction structure determination of the cobalt and nickel derivatives. Chemistry of Materials, 1993, 5, 121-128.	3.2	87
213	New lamellar oxophosphorus derivatives of nickel(II): x-ray powder diffraction structure determinations and magnetic studies of Ni(HPO3).H2O, NiCl(H2PO2).H2O, and NixCo1-x(HPO3).H2O solid solutions. Inorganic Chemistry, 1993, 32, 5044-5052.	1.9	25
214	Crystal structure and magnetic properties of \hat{l}_{\pm} -Mn(H2PO2)2 \hat{A} -H2O. Journal of Alloys and Compounds, 1992, 188, 133-137.	2.8	11
215	Superexchange pathways in oxovanadium(IV) phosphates. Journal of Alloys and Compounds, 1992, 188, 123-127.	2.8	12

Magnetostructural correlations in .alpha.-vanadyl hydrogen phosphate dihydrate

13

216

#	Article	IF	CITATIONS
217	Synthesis and crystal structure of α-NH4(VO2)(HPO4). Journal of Solid State Chemistry, 1992, 97, 283-291.	1.4	37
218	Oxovanadium(IV) hydrogen phosphate hydrates: a time-resolved neutron powder diffraction study. Chemistry of Materials, 1991, 3, 407-413.	3.2	20
219	Layer structure of [CoCl(H2PO2)].H2O. Acta Crystallographica Section C: Crystal Structure Communications, 1991, 47, 1152-1155.	0.4	4
220	Synthesis and crystal structure of Na1+xV4P4O17(OH) (x â‰^ 1.44). Journal of Solid State Chemistry, 1990, 87, 178-185.	1.4	9
221	Crystal structure and magnetism of Co(HPO3)â«H2O: A novel layered compound of Co(II). Journal of Applied Physics, 1990, 67, 5998-6000.	1.1	7
222	New vanadyl hydrogenphosphate hydrates. Electronic spectra of the VO2+ ion in the VO(HxPO4)x·yH2O system. Materials Research Bulletin, 1989, 24, 1347-1360.	2.7	25
223	Crystal structure of \hat{l}^2 -VO(HPO4) \hat{A} - 2H2O solved from X-ray powder diffraction. Journal of Solid State Chemistry, 1989, 79, 169-176.	1.4	31
224	Vanadyl phosphate dihydrate, a solid acid: the role of water in VOPO4�2H2O and its sodium derivatives Na x (VIV x VV 1?x O)PO4�(2?x)H2O. Journal of Inclusion Phenomena, 1988, 6, 193-211.	0.6	23
225	Comparative study of synthetic procedures for YBaCuO-type oxides. Solid State Ionics, 1988, 26, 148.	1.3	0
226	Ligand-field analysis of the ion VO2+: application of the angular overlap model to the electronic absorption spectrum of bis(acetylacetonato)oxovanadium(IV) in various solvents. Journal of the Chemical Society Dalton Transactions, 1988, , 1665-1669.	1.1	7