Hossein Ali Alikhani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6578087/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Potassium solubilizing bacteria (KSB):: Mechanisms, promotion of plant growth, and future prospects Â- A review. Journal of Soil Science and Plant Nutrition, 2017, 17, 897-911.	3.4	315
2	Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World Journal of Microbiology and Biotechnology, 2011, 27, 197-205.	3.6	226
3	Biodegradation of Low-Density Polyethylene (LDPE) by Mixed Culture of Lysinibacillus xylanilyticus and Aspergillus niger in Soil. PLoS ONE, 2013, 8, e71720.	2.5	225
4	Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2015, 2, 72-78.	1.6	193
5	Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil, 2006, 287, 35-41.	3.7	149
6	Improvement of growth and yield of maize under water stress by co-inoculating an arbuscular mycorrhizal fungus and a plant growth promoting rhizobacterium together with phosphate fertilizers. Agriculture, Ecosystems and Environment, 2018, 258, 59-70.	5.3	101
7	Bacterial Biosynthesis of 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase and Indole-3-Acetic Acid (IAA) as Endophytic Preferential Selection Traits by Rice Plant Seedlings. Journal of Plant Growth Regulation, 2014, 33, 654-670.	5.1	88
8	Bacterial biosynthesis of 1-aminocyclopropane-1-caboxylate (ACC) deaminase, a useful trait to elongation and endophytic colonization of the roots of rice under constant flooded conditions. Physiology and Molecular Biology of Plants, 2014, 20, 425-434.	3.1	83
9	Biodegradation pathway and detoxification of the diazo dye Reactive Black 5 by Phanerochaete chrysosporium. Bioresource Technology, 2011, 102, 10359-10362.	9.6	70
10	Root-induced changes of Zn and Pb dynamics in the rhizosphere of sunflower with different plant growth promoting treatments in a heavily contaminated soil. Ecotoxicology and Environmental Safety, 2018, 147, 206-216.	6.0	69
11	Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plant. Rhizosphere, 2016, 2, 5-12.	3.0	68
12	Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. Journal of Plant Nutrition, 2017, 40, 736-746.	1.9	68
13	Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Applied Soil Ecology, 2019, 138, 160-170.	4.3	68
14	Effect of rhizospheric and endophytic bacteria with multiple plant growth promoting traits on wheat growth. Environmental Science and Pollution Research, 2019, 26, 19804-19813.	5.3	64
15	Consortium of endophyte and rhizosphere phosphate solubilizing bacteria improves phosphorous use efficiency in wheat cultivars in phosphorus deficient soils. Rhizosphere, 2020, 14, 100196.	3.0	59
16	Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biological Control, 2016, 94, 11-24.	3.0	57
17	Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnology Reports (Amsterdam, Netherlands), 2019, 21, e00305.	4.4	53
18	Decolouration of azo dyes by Phanerochaete chrysosporium immobilised into alginate beads. Environmental Science and Pollution Research, 2010, 17, 145-153.	5.3	52

HOSSEIN ALI ALIKHANI

#	Article	IF	CITATIONS
19	Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. Sustainable Development and Biodiversity, 2015, , 183-258.	1.7	52
20	Vermicompost enriched with phosphate–solubilizing bacteria provides plant with enough phosphorus in a sequential cropping under calcareous soil conditions. Journal of Cleaner Production, 2019, 221, 27-37.	9.3	50
21	Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. Journal of Hazardous Materials, 2009, 164, 296-300.	12.4	46
22	Evaluation of Gram-positive rhizosphere and endophytic bacteria for biological control of fungal rice (Oryzia sativa L.) pathogens. European Journal of Plant Pathology, 2017, 147, 7-14.	1.7	38
23	Responses of Lentil to Co-Inoculation with Phosphate-Solubilizing Rhizobial Strains and Arbuscular Mycorrhizal Fungi. Journal of Plant Nutrition, 2006, 29, 1509-1522.	1.9	36
24	Geochemical fractions and phytoavailability of Zinc in a contaminated calcareous soil affected by biotic and abiotic amendments. Environmental Geochemistry and Health, 2018, 40, 1221-1235.	3.4	34
25	Improved Phosphorus (P) Uptake and Yield of Rainfed Wheat Fed with P Fertilizer by Drought-Tolerant Phosphate-Solubilizing Fluorescent Pseudomonads Strains: a Field Study in Drylands. Journal of Soil Science and Plant Nutrition, 2020, 20, 2195-2211.	3.4	33
26	Assessment of the joint effect of laccase and cellobiose dehydrogenase on the decolouration of different synthetic dyes. Journal of Hazardous Materials, 2009, 169, 176-181.	12.4	32
27	Improved growth and nutrient acquisition of wheat genotypes in phosphorus deficient soils by plant growth-promoting rhizospheric and endophytic bacteria. Soil Science and Plant Nutrition, 2018, 64, 719-727.	1.9	29
28	Bioremediation of Cadmium-Contaminated Soil through Cultivation of Maize Inoculated with Plant Growth–Promoting Rhizobacteria. Bioremediation Journal, 2012, 16, 204-211.	2.0	28
29	Identification and determination of extracellular phytate-degrading activity in actinomycetes. World Journal of Microbiology and Biotechnology, 2012, 28, 2601-2608.	3.6	28
30	In planta selection of plant growth promoting endophytic bacteria for rice (Oryza sativa L.). Journal of Soil Science and Plant Nutrition, 2014, , 0-0.	3.4	28
31	The potential contribution of siderophore producing bacteria on growth and Fe ion concentration of sunflower (<i>Helianthus annuus</i> L.) under water stress. Journal of Plant Nutrition, 2018, 41, 619-626.	1.9	26
32	Indole-3-acetic acid (IAA) producing Pseudomonas isolates inhibit seed germination and α-amylase activity in durum wheat (Triticum turgidum L.). Spanish Journal of Agricultural Research, 2016, 14, e0802.	0.6	25
33	Effect of different biochars amendment on soil biological indicators in a calcareous soil. Environmental Science and Pollution Research, 2018, 25, 14752-14761.	5.3	23
34	Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. European Journal of Plant Pathology, 2018, 150, 497-506.	1.7	22
35	Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH?. Journal of Material Cycles and Waste Management, 2018, 20, 1179-1187.	3.0	22
36	Vermiwash allows reduced application rates of acaricide azocyclotin for the control of two spotted spider mite, Tetranychus urticae Koch, on bean plant (Phaseolus vulgaris L.). Ecological Engineering, 2016, 93, 234-241.	3.6	21

HOSSEIN ALI ALIKHANI

#	Article	IF	CITATIONS
37	In vitro Growth of Wheat (Triticum aestivum L.) Seedlings, Inoculated with Azospirillum sp., Under Drought Stress. International Journal of Botany, 2009, 5, 244-249.	0.2	21
38	Interaction study of biochar with phosphate-solubilizing bacterium on phosphorus availability in calcareous soil. Archives of Agronomy and Soil Science, 2017, 63, 1572-1581.	2.6	20
39	Periphytic biofilm and rice rhizosphere phosphate-solubilizing bacteria and fungi: A possible use for activating occluded P in periphytic biofilms in paddy fields. Rhizosphere, 2021, 19, 100395.	3.0	20
40	Influence of arbuscular mycorrhizal fungi and an improving growth bacterium on Cd uptake and maize growth in Cd-polluted soils. Spanish Journal of Agricultural Research, 2011, 9, 1213.	0.6	20
41	Suppression of the fungal pathogen <i>Magnaporthe grisea</i> by <i>Stenotrophomonas maltophilia</i> , a seed-borne rice (<i>Oryza sativa</i> L.) endophytic bacterium. Archives of Agronomy and Soil Science, 2016, 62, 1271-1284.	2.6	19
42	Halotolerant Plant Growth-Promoting Fungi and Bacteria as an Alternative Strategy for Improving Nutrient Availability to Salinity-Stressed Crop Plants. , 2019, , 103-146.		17
43	Study the Effects of Siderophore-Producing Bacteria on Zinc and Phosphorous Nutrition of Canola and Maize Plants. Communications in Soil Science and Plant Analysis, 2016, 47, 1517-1527.	1.4	16
44	Combined use of municipal solid waste biochar and bacterial biosorbent synergistically decreases Cd(II) and Pb(II) concentration in edible tissue of forage maize irrigated with heavy metal–spiked water. Heliyon, 2020, 6, e04688.	3.2	16
45	Comparison of Compost and Vermicompost of Yard Leaf Manure and Inorganic Fertilizer on Yield of Corn. Communications in Soil Science and Plant Analysis, 2011, 42, 123-131.	1.4	15
46	Colonization and Biodegradation of  Photo-Oxidized Low-Density Polyethylene (LDPE) by New Strains of <i>Aspergillus</i> sp. and <i>Lysinibacillus</i> sp Bioremediation Journal, 2014, 18, 213-226.	2.0	15
47	The Use of Coal Gangue as a Cultivation Bed Conditioner in Forage Maize Inoculated with Arbuscular Mycorrhizal Fungi. Communications in Soil Science and Plant Analysis, 2017, 48, 1266-1279.	1.4	15
48	Assessment of phthalic acid esters pollution in Anzali wetland, north of Iran. International Journal of Environmental Science and Technology, 2019, 16, 7025-7036.	3.5	14
49	Enriching Vermicompost Using P-solubilizing and N-fixing Bacteria under Different Temperature Conditions. Communications in Soil Science and Plant Analysis, 2017, 48, 139-147.	1.4	13
50	Interactive effect of nitrogen fertilizer and hydrocarbon pollution on soil biological indicators. Environmental Earth Sciences, 2014, 72, 3513-3519.	2.7	11
51	Root bacterial endophytes as potential biological control agents against fungal rice pathogens. Archives of Phytopathology and Plant Protection, 2019, 52, 560-581.	1.3	11
52	Assessment of the Potential of Indole-3-Acetic Acid Producing Bacteria to manage Chemical Fertilizers Application. International Journal of Environmental Research, 2019, 13, 603-611.	2.3	11
53	Isolated bacteria from saline–sodic soils alter the response of wheat under high adsorbed sodium and salt stress. International Journal of Environmental Science and Technology, 2017, 14, 143-150. ————————————————————————————————————	3.5	10
54	Optimal Concentrations of Silicon Enhance the Growth of Soybean (Glycine Max L.) Cultivars by Improving Nodulation, Root System Architecture, and Soil Biological Properties. Silicon, 2022, 14, 5333-5345.	3.3	10

HOSSEIN ALI ALIKHANI

#	Article	IF	CITATIONS
55	Biodiversity of Isolated Cyanobacteria from Desert Soils in Iran. Geomicrobiology Journal, 2017, 34, 784-794.	2.0	9
56	Effect of Different Enriched Vermicomposts, Humic Acid Extract and Indole-3-Acetic Acid Amendments on the Growth of Brassica napus. Plants, 2022, 11, 227.	3.5	8
57	Root nodulation of alfalfa by Ensifer meliloti in petroleum contaminated soil. Rhizosphere, 2021, 17, 100305.	3.0	6
58	Presence of Eisenia fetida enhanced phytoremediation of anthracene by Lolium perenne. Bioscience Journal, O, , 888-898.	0.4	6
59	THE DIVERSITY OF SULFUR-OXIDIZING BACTERIAL POPULATIONS AT AN IRANIAN COPPER MINE AND THE SURROUNDING AGRICULTURAL SOILS. Applied Ecology and Environmental Research, 2016, 14, 509-533.	0.5	6
60	Impact of Poultry Manure Application on Phosphorus Desorption in Some Calcareous Soils. Communications in Soil Science and Plant Analysis, 2011, 42, 208-219.	1.4	5
61	Isolation, Cloning and Sequence Analysis of 1-Aminocyclopropane-1-Carboxylate Deaminase Gene from Native Sinorhizobium meliloti. Iranian Journal of Biotechnology, 2014, 12, 50-56.	0.3	5
62	Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase-Producing Bacteria Alleviate Sodium Stress and Promote Wheat Growth. Iranian Journal of Science and Technology, Transaction A: Science, 2018, 42, 1037-1048.	1.5	4
63	Performance Evaluation of Phosphate-Solubilizing Fluorescent Pseudomonads in Minimizing Phosphorus Fertilizer Use and Improving Wheat Productivity: a Two-Year Field Study. Journal of Soil Science and Plant Nutrition, 2022, 22, 1224-1237.	3.4	4
64	Presence of Eisenia fetida enhanced phytoremediation of anthracene by Lolium perenne. Bioscience Journal, O, , 888-898.	0.4	0