
Marcel Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6577558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Red-Shifted Excitation and Two-Photon Pumping of Biointegrated GalnP/AlGaInP Quantum Well Microlasers. ACS Photonics, 2022, 9, 952-960.	6.6	6
2	Deep tissue contractility sensing with biointegrated microlasers. , 2021, , .		0
3	Distributed Feedback Lasers Based on Green Fluorescent Protein and Conformal High Refractive Index Oxide Layers. Laser and Photonics Reviews, 2020, 14, 2000101.	8.7	9
4	Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nature Photonics, 2020, 14, 452-458.	31.4	77
5	Cardiac Sensing with Bio-Integrated Microlasers. Optics and Photonics News, 2020, 31, 55.	0.5	0
6	Narrowband Organic Lightâ€Emitting Diodes for Fluorescence Microscopy and Calcium Imaging. Advanced Materials, 2019, 31, 1903599.	21.0	20
7	Flexible and Ultra-Lightweight Polymer Membrane Lasers. , 2019, , .		1
8	Microlaser-based contractility sensing in single cardiomyocytes and whole hearts. , 2019, , .		0
9	Intracellular Semiconductor Nanodisk Lasers. , 2019, , .		0
10	Microlaser-based contractility sensing in single cardiomyocytes and whole hearts. , 2019, , .		0
11	Timeâ€Resolved Studies of Energy Transfer in Thin Films of Green and Red Fluorescent Proteins. Advanced Functional Materials, 2018, 28, 1706300.	14.9	12
12	On the Molecular Origin of Charge Separation at the Donor–Acceptor Interface. Advanced Energy Materials, 2018, 8, 1702232.	19.5	51
13	Flexible and ultra-lightweight polymer membrane lasers. Nature Communications, 2018, 9, 1525.	12.8	122
14	Non-obstructive intracellular nanolasers. Nature Communications, 2018, 9, 4817.	12.8	75
15	Polariton-lasing in microcavities filled with fluorescent proteins. , 2018, , .		2
16	Single cell induced optical confinement in biological lasers. Journal Physics D: Applied Physics, 2017, 50, 084005.	2.8	10
17	Tuning Side Chain and Main Chain Order in a Prototypical Donor–Acceptor Copolymer: Implications for Optical, Electronic, and Photovoltaic Characteristics. Advances in Polymer Science, 2017, , 243-265.	0.8	0
18	Lasing in Live Mitotic and Non-Phagocytic Cells by Efficient Delivery of Microresonators. Scientific Reports, 2017, 7, 40877.	3.3	41

MARCEL SCHUBERT

#	Article	IF	CITATIONS
19	Fluorescent Proteins: Strong Coupling in Fully Tunable Microcavities Filled with Biologically Produced Fluorescent Proteins (Advanced Optical Materials 1/2017). Advanced Optical Materials, 2017, 5, .	7.3	0
20	Strong Coupling in Fully Tunable Microcavities Filled with Biologically Produced Fluorescent Proteins. Advanced Optical Materials, 2017, 5, 1600659.	7.3	21
21	An exciton-polariton laser based on biologically produced fluorescent protein. Science Advances, 2016, 2, e1600666.	10.3	159
22	Optofluidic distributed feedback lasers with evanescent pumping: Reduced threshold and angular dispersion analysis. Applied Physics Letters, 2016, 108, .	3.3	18
23	Lasing within Live Cells Containing Intracellular Optical Microresonators for Barcode-Type Cell Tagging and Tracking. Nano Letters, 2015, 15, 5647-5652.	9.1	158
24	Correlated Donor/Acceptor Crystal Orientation Controls Photocurrent Generation in Allâ€Polymer Solar Cells. Advanced Functional Materials, 2014, 24, 4068-4081.	14.9	144
25	The Role of Regioregularity, Crystallinity, and Chain Orientation on Electron Transport in a High-Mobility n-Type Copolymer. Journal of the American Chemical Society, 2014, 136, 4245-4256.	13.7	226
26	Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nature Materials, 2014, 13, 63-68.	27.5	667
27	Fullerene-Free Polymer Solar Cells with Highly Reduced Bimolecular Recombination and Field-Independent Charge Carrier Generation. Journal of Physical Chemistry Letters, 2014, 5, 2815-2822.	4.6	42
28	Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors. Polymer Chemistry, 2014, 5, 3404-3411.	3.9	48
29	Mobility relaxation and electron trapping in a donor/acceptor copolymer. Physical Review B, 2013, 87, .	3.2	51
30	Full electronic structure across a polymer heterojunction solar cell. Journal of Materials Chemistry, 2012, 22, 4418.	6.7	33
31	Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. Journal of the American Chemical Society, 2012, 134, 18303-18317.	13.7	395
32	Influence of sintering on the structural and electronic properties of TiO2 nanoporous layers prepared via a non-sol–gel approach. Colloid and Polymer Science, 2012, 290, 1843-1854.	2.1	16
33	Influence of Aggregation on the Performance of Allâ€Polymer Solar Cells Containing Lowâ€Bandgap Naphthalenediimide Copolymers. Advanced Energy Materials, 2012, 2, 369-380.	19.5	316
34	Photogeneration and Recombination in P3HT/PCBM Solar Cells Probed by Time-Delayed Collection Field Experiments. Journal of Physical Chemistry Letters, 2011, 2, 700-705.	4.6	183
35	Time-of-flight measurements and vertical transport in a high electron-mobility polymer. Applied Physics Letters, 2011, 99, 183310.	3.3	30
36	Charge mobility determination by current extraction under linear increasing voltages: Case of nonequilibrium charges and field-dependent mobilities. Physical Review B, 2010, 81, .	3.2	65

MARCEL SCHUBERT

#	Article	IF	CITATIONS
37	Bulk Electron Transport and Charge Injection in a High Mobility nâ€Type Semiconducting Polymer. Advanced Materials, 2010, 22, 2799-2803.	21.0	145
38	The Relationship between the Electric Field-Induced Dissociation of Charge Transfer Excitons and the Photocurrent in Small Molecular/Polymeric Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 982-986.	4.6	50
39	Heterojunction topology versus fill factor correlations in novel hybrid small-molecular/polymeric solar cells. Journal of Chemical Physics, 2009, 130, 094703.	3.0	43
40	Charge transport and recombination in bulk heterojunction solar cells containing a dicyanoimidazoleâ€based molecular acceptor. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2743-2749.	1.8	10
41	Tuning of the Excited-State Properties and Photovoltaic Performance in PPV-Based Polymer Blends. Journal of Physical Chemistry C, 2008, 112, 14607-14617.	3.1	33