
Dorte Bodin DresbÃ,ll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657731/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Back to our roots: exploring the role of root morphology as a mediator of beneficial plant–microbe interactions. Environmental Microbiology, 2022, 24, 3264-3272.	3.8	47
2	Root distribution in intercropping systems – a comparison of DNA based methods and visual distinction of roots. Archives of Agronomy and Soil Science, 2021, 67, 15-28.	2.6	9
3	Dual labelling by 2H and 15N revealed differences in uptake potential by deep roots of chicory. Rhizosphere, 2021, 19, 100368.	3.0	8
4	Uptake of subsoil water below 2 m fails to alleviate drought response in deep-rooted Chicory (Cichorium intybus L.). Plant and Soil, 2020, 446, 275-290.	3.7	30
5	The effect of drought and intercropping on chicory nutrient uptake from below 2Âm studied in a multiple tracer setup. Plant and Soil, 2020, 446, 543-561.	3.7	12
6	Core-labelling technique (CLT): a novel combination of the ingrowth-core method and tracer technique for deep root study. Plant Methods, 2020, 16, 84.	4.3	11
7	Exposing Deep Roots: A Rhizobox Laboratory. Trends in Plant Science, 2020, 25, 418-419.	8.8	15
8	Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends in Plant Science, 2020, 25, 406-417.	8.8	127
9	Against the wall—Root growth and competition in four perennial winter hardy plant species grown in living walls. Urban Forestry and Urban Greening, 2018, 29, 293-302.	5.3	11
10	Cultivar differences in spatial root distribution during early growth in soil, and its relation to nutrient uptake - a study of wheat, onion and lettuce. Plant and Soil, 2016, 408, 255-270.	3.7	16
11	The significance of litter loss and root growth on nitrogen efficiency in normal and semi-dwarf winter oilseed rape genotypes. Field Crops Research, 2016, 186, 166-178.	5.1	18
12	Winter wheat cultivars and nitrogen (N) fertilization—Effects on root growth, N uptake efficiency and N use efficiency. European Journal of Agronomy, 2015, 68, 38-49.	4.1	113
13	Approaches to Translational Plant Science. Advances in Agronomy, 2015, , 305-335.	5.2	1
14	Root interactions between intercropped legumes and non-legumes—a competition study of red clover and red beet at different nitrogen levels. Plant and Soil, 2014, 378, 59-72.	3.7	28
15	Will breeding for nitrogen use efficient crops lead to nitrogen use efficient cropping systems?: a simulation study of GA—EA—M interactions. Euphytica, 2014, 199, 97-117.	1.2	24
16	Spatial root distribution of plants growing in vertical media for use in living walls. Plant and Soil, 2014, 380, 231-248.	3.7	16
17	Root growth of perennials in vertical growing media for use in green walls. Scientia Horticulturae, 2014, 166, 31-41.	3.6	22
18	Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 2013, 369, 467-477.	3.7	34

Dorte Bodin DresbÃ,ll

#	Article	IF	CITATIONS
19	Spatial variation in root system activity of tomato (Solanum lycopersicum L.) in response to short and long-term waterlogging as determined by 15N uptake. Plant and Soil, 2012, 357, 161-172.	3.7	16
20	Crop yield, root growth, and nutrient dynamics in a conventional and three organic cropping systems with different levels of external inputs and N re-cycling through fertility building crops. European Journal of Agronomy, 2012, 37, 66-82.	4.1	133
21	Spatial and temporal oxygen distribution measured with oxygen microsensors in growing media with different levels of compaction. Scientia Horticulturae, 2011, 128, 68-75.	3.6	2
22	SPATIAL VARIATION IN OXYGEN AVAILABILITY IN GROWING MEDIA. Acta Horticulturae, 2011, , 195-200.	0.2	0
23	Incorporation time of nitrogen catch crops influences the N effect for the succeeding crop. Soil Use and Management, 2010, 26, 27-35.	4.9	73
24	Effect of growing media composition, compaction and periods of anoxia on the quality and keeping quality of potted roses (Rosa sp.). Scientia Horticulturae, 2010, 126, 56-63.	3.6	16
25	Yields and the extent and causes of damage in cauliflower, bulb onion, and carrot grown under organic or conventional regimes. Journal of Horticultural Science and Biotechnology, 2008, 83, 770-776.	1.9	4
26	Structural changes of plant residues during decomposition in a compost environment. Bioresource Technology, 2006, 97, 973-981.	9.6	43
27	Long-Term Stability and Mineralization Rate Of Compost is Influenced by Timing of Nutrient Application During Composting of Plant Residues. Compost Science and Utilization, 2006, 14, 215-221.	1.2	2
28	Delayed nutrient application affects mineralisation rate during composting of plant residues. Bioresource Technology, 2005, 96, 1093-1101.	9.6	21
29	Structural differences in wheat (Triticum aestivum), hemp (Cannabis sativa) and Miscanthus (Miscanthus ogiformis) affect the quality and stability of plant based compost. Scientia Horticulturae, 2005, 107, 81-89.	3.6	7