Ivan Hiltpold

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657702/publications.pdf

Version: 2024-02-01

39 papers 2,953 citations

430874 18 h-index 377865 34 g-index

42 all docs 42 docs citations

times ranked

42

2429 citing authors

#	Article	IF	CITATIONS
1	Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature, 2005, 434, 732-737.	27.8	1,099
2	A Maize (<i>E</i>)-β-Caryophyllene Synthase Implicated in Indirect Defense Responses against Herbivores Is Not Expressed in Most American Maize Varieties. Plant Cell, 2008, 20, 482-494.	6.6	422
3	Restoring a maize root signal that attracts insect-killing nematodes to control a major pest. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13213-13218.	7.1	298
4	The importance of root-produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil, 2012, 358, 51-60.	3.7	137
5	Belowground Chemical Signaling in Maize: When Simplicity Rhymes with Efficiency. Journal of Chemical Ecology, 2008, 34, 628-635.	1.8	115
6	Genetically engineered maize plants reveal distinct costs and benefits of constitutive volatile emissions in the field. Plant Biotechnology Journal, 2013, 11, 628-639.	8.3	90
7	Systemic root signalling in a belowground, volatileâ€mediated tritrophic interaction. Plant, Cell and Environment, 2011, 34, 1267-1275.	5.7	80
8	Selection of entomopathogenic nematodes for enhanced responsiveness to a volatile root signal helps to control a major root pest. Journal of Experimental Biology, 2010, 213, 2417-2423.	1.7	75
9	How maize root volatiles affect the efficacy of entomopathogenic nematodes in controlling the western corn rootworm?. Chemoecology, 2010, 20, 155-162.	1.1	64
10	Entomopathogenic Nematodes in Sustainable Food Production. Frontiers in Sustainable Food Systems, 2020, 4, .	3.9	64
11	Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant and Soil, 2012, 358, 11-25.	3.7	63
12	Manipulation of Chemically Mediated Interactions in Agricultural Soils to Enhance the Control of Crop Pests and to Improve Crop Yield. Journal of Chemical Ecology, 2012, 38, 641-650.	1.8	57
13	Comparative susceptibility of larval instars and pupae of the western corn rootworm to infection by three entomopathogenic nematodes. BioControl, 2009, 54, 255-262.	2.0	47
14	Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biology and Biochemistry, 2017, 112, 117-126.	8.8	47
15	The dual effects of root-cap exudates on nematodes: from quiescence in plant-parasitic nematodes to frenzy in entomopathogenic nematodes. Journal of Experimental Botany, 2015, 66, 603-611.	4.8	42
16	The Role of Root-Produced Volatile Secondary Metabolites in Mediating Soil Interactions. , 0, , .		26
17	The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 2014, 122, 32-39.	3.2	26
18	Nature, Evolution and Characterisation of Rhizospheric Chemical Exudates Affecting Root Herbivores. Advances in Insect Physiology, 2013, , 97-157.	2.7	25

#	Article	IF	CITATIONS
19	Selective breeding of entomopathogenic nematodes for enhanced attraction to a root signal did not reduce their establishment or persistence after field release. Plant Signaling and Behavior, 2010, 5, 1450-1452.	2.4	22
20	Prospects in the Application Technology and Formulation of Entomopathogenic Nematodes for Biological Control of Insect Pests. , 2015 , , $187-205$.		18
21	Calcium-alginate beads as a formulation for the application of entomopathogenic nematodes to control rootworms. Journal of Pest Science, 2021, 94, 1197-1208.	3.7	12
22	Highly Potent Extracts from Pea (Pisum sativum) and Maize (Zea mays) Roots Can Be Used to Induce Quiescence in Entomopathogenic Nematodes. Journal of Chemical Ecology, 2015, 41, 793-800.	1.8	11
23	Neonate larvae of the specialist herbivore Diabrotica virgifera virgifera do not exploit the defensive volatile (E)-Î ² -caryophyllene in locating maize roots. Journal of Pest Science, 2016, 89, 853-858.	3.7	11
24	Elevated atmospheric carbon dioxide concentrations alter root morphology and reduce the effectiveness of entomopathogenic nematodes. Plant and Soil, 2020, 447, 29-38.	3.7	11
25	Birds Bug on Indirect Plant Defenses to Locate Insect Prey. Journal of Chemical Ecology, 2018, 44, 576-579.	1.8	10
26	Navigating on a chemical radar: Usage of root exudates by foraging Diabrotica virgifera virgifera larvae. Journal of Applied Entomology, 2018, 142, 911-920.	1.8	8
27	Intercropping Winter Oilseed Rape (Brassica napus L.) Has the Potential to Lessen the Impact of the Insect Pest Complex. Agronomy, 2022, 12, 723.	3.0	8
28	Root responses to domestication, precipitation and silicification: weeping meadow grass simplifies and alters toughness. Plant and Soil, 2018, 427, 291-304.	3.7	7
29	Dryland management regimes alter forest habitats and understory arthropod communities. Annals of Applied Biology, 2018, 172, 282-294.	2.5	5
30	Indirect Root Defenses Cause Induced Fitness Costs in Bt-Resistant Western Corn Rootworm. Journal of Economic Entomology, 2018, 111, 2349-2358.	1.8	5
31	Carbon Isotope Ratios Document That the Elytra of Western Corn Rootworm (Coleoptera:) Tj ETQq1 1 0.784314 Alternate Hosts. Environmental Entomology, 2014, 43, 840-848.	rgBT /Ove 1.4	erlock 10 Tf5 4
32	Detecting the Conspecific: Herbivory-Induced Olfactory Cues in the Fall Armyworm (Lepidoptera:) Tj ETQq0 0 0 rg	gBT_ Overlo	эс <u>ф</u> 10 Tf 50
33	Novel In vitro Procedures for Rearing a Root-Feeding Pest (Heteronychus arator) of Grasslands. Frontiers in Plant Science, 2016, 7, 1316.	3.6	3
34	Root herbivore performance suppressed when feeding on a jasmonateâ€induced pasture grass. Ecological Entomology, 2018, 43, 547-550.	2.2	3
35	Advances in the use of entomopathogenic nematodes (EPNs) as biopesticides in suppressing crop insect pests. Burleigh Dodds Series in Agricultural Science, 2020, , 195-232.	0.2	3
36	The Role of Volatile Organic Compounds in the Indirect Defense of Plants Against Insect Herbivores Above- and Belowground. Chimia, 2010, 64, 322-322.	0.6	1

IVAN HILTPOLD

#	Article	IF	CITATIONS
37	Editorial: Grassland-Invertebrate Interactions: Plant Productivity, Resilience and Community Dynamics. Frontiers in Plant Science, 2017, 8, 1413.	3.6	1
38	Correction for Sehnal et al., An organometallic route to long helicenes. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17605-17605.	7.1	0
39	Der Hilfeschrei des Mais. Nachrichten Aus Der Chemie, 2010, 58, 914-914.	0.0	O