Sangmi Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576830/publications.pdf Version: 2024-02-01

SANCHI CHUNC

#	Article	IF	CITATIONS
1	hPSC-Derived Maturing GABAergic Interneurons Ameliorate Seizures and Abnormal Behavior in Epileptic Mice. Cell Stem Cell, 2014, 15, 559-573.	11.1	171
2	Efficient Specification of Interneurons from Human Pluripotent Stem Cells by Dorsoventral and Rostrocaudal Modulation. Stem Cells, 2014, 32, 1789-1804.	3.2	88
3	ES cell-derived renewable and functional midbrain dopaminergic progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9703-9708.	7.1	86
4	Dysregulated protocadherin-pathway activity as an intrinsic defect in induced pluripotent stem cell–derived cortical interneurons from subjects with schizophrenia. Nature Neuroscience, 2019, 22, 229-242.	14.8	84
5	iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Molecular Psychiatry, 2020, 25, 2873-2888.	7.9	54
6	Activated microglia cause metabolic disruptions in developmental cortical interneurons that persist in interneurons from individuals with schizophrenia. Nature Neuroscience, 2020, 23, 1352-1364.	14.8	50
7	Mitochondrial Dysfunction in Schizophrenia. BioEssays, 2020, 42, e1900202.	2.5	28
8	Differentiation of human pluripotent stem cells into Medial Ganglionic Eminence vs. Caudal Ganglionic Eminence cells. Methods, 2016, 101, 103-112.	3.8	24
9	Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2382-2387.	3.8	23
10	Cortical GABAergic Interneuron/Progenitor Transplantation as a Novel Therapy for Intractable Epilepsy. Frontiers in Cellular Neuroscience, 2018, 12, 167.	3.7	21
11	Large-Scale Generation and Characterization of Homogeneous Populations of Migratory Cortical Interneurons from Human Pluripotent Stem Cells. Molecular Therapy - Methods and Clinical Development, 2019, 13, 414-430.	4.1	14
12	Human forebrain endothelial cell therapy for psychiatric disorders. Molecular Psychiatry, 2020, 26, 4864-4883.	7.9	6
13	Impact of schizophrenia GWAS loci converge onto distinct pathways in cortical interneurons vs glutamatergic neurons during development. Molecular Psychiatry, 2022, 27, 4218-4233.	7.9	6
14	Migratory cortical interneuron-specific transcriptome abnormalities in schizophrenia. Journal of Psychiatric Research, 2021, 137, 111-116.	3.1	4
15	Induced pluripotent stem cells for modeling schizophrenia pathogenesis. , 2021, , 105-127.		0