James B Grace

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/657614/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A graphical causal model for resolving species identity effects and biodiversity–ecosystem function correlations: comment. Ecology, 2022, 103, e03378.	1.5	3
2	Surface Elevation Change Dynamics in Coastal Marshes Along the Northwestern Gulf of Mexico: Anticipating Effects of Rising Sea-Level and Intensifying Hurricanes. Wetlands, 2022, 42, .	0.7	11
3	Migration and transformation of coastal wetlands in response to rising seas. Science Advances, 2022, 8, .	4.7	45
4	Instrumental variable methods in structural equation models. Methods in Ecology and Evolution, 2021, 12, 1148-1157.	2.2	12
5	Biodiversity effects on grape quality depend on variety and management intensity. Journal of Applied Ecology, 2021, 58, 1442-1454.	1.9	6
6	Scientist's guide to developing explanatory statistical models using causal analysis principles. Ecology, 2020, 101, e02962.	1.5	52
7	The importance of natural versus human factors for ecological conditions of streams and rivers. Science of the Total Environment, 2020, 704, 135268.	3.9	19
8	Hurricane Sandy Effects on Coastal Marsh Elevation Change. Estuaries and Coasts, 2020, 43, 1640-1657.	1.0	12
9	Climate and local environment structure asynchrony and the stability of primary production in grasslands. Global Ecology and Biogeography, 2020, 29, 1177-1188.	2.7	41
10	Climatic Controls on the Distribution of Foundation Plant Species in Coastal Wetlands of the Conterminous United States: Knowledge Gaps and Emerging Research Needs. Estuaries and Coasts, 2019, 42, 1991-2003.	1.0	23
11	The plant diversity sampling design for The National Ecological Observatory Network. Ecosphere, 2019, 10, e02603.	1.0	19
12	Patterns of resource allocation in a coastal marsh plant (Schoenoplectus americanus) along a sediment-addition gradient. Estuarine, Coastal and Shelf Science, 2019, 228, 106337.	0.9	3
13	Context-dependent interactions and the regulation of species richness in freshwater fish. Nature Communications, 2018, 9, 973.	5.8	14
14	Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient. Ecology, 2018, 99, 822-831.	1.5	42
15	Development of a Multimetric Index for Integrated Assessment of Salt Marsh Ecosystem Condition. Estuaries and Coasts, 2018, 41, 334-348.	1.0	5
16	Climate and plant controls on soil organic matter in coastal wetlands. Global Change Biology, 2018, 24, 5361-5379.	4.2	111
17	Quantifying relative importance: computing standardized effects in models with binary outcomes. Ecosphere, 2018, 9, e02283.	1.0	45
18	Associations between Urban Sprawl and Life Expectancy in the United States. International Journal of Environmental Research and Public Health. 2018, 15, 861	1.2	53

#	Article	IF	CITATIONS
19	Macroclimatic change expected to transform coastal wetland ecosystems this century. Nature Climate Change, 2017, 7, 142-147.	8.1	159
20	Ecology: Signals of impending change. Nature Ecology and Evolution, 2017, 1, 47.	3.4	3
21	A decade of insights into grassland ecosystem responses to global environmental change. Nature Ecology and Evolution, 2017, 1, 118.	3.4	82
22	Response of bird community structure to habitat management in piñon-juniper woodland-sagebrush ecotones. Forest Ecology and Management, 2017, 400, 256-268.	1.4	6
23	Is biotic resistance enhanced by natural variation in diversity?. Oikos, 2017, 126, 1484-1492.	1.2	8
24	Climatic controls on the global distribution, abundance, and species richness of mangrove forests. Ecological Monographs, 2017, 87, 341-359.	2.4	228
25	Linear and nonlinear effects of temperature and precipitation on ecosystem properties in tidal saline wetlands. Ecosphere, 2017, 8, e01956.	1.0	85
26	Fatal Attraction? Intraguild Facilitation and Suppression among Predators. American Naturalist, 2017, 190, 663-679.	1.0	67
27	Using structural equation modeling to link human activities to wetland ecological integrity. Ecosphere, 2016, 7, e01548.	1.0	25
28	Disentangling vegetation diversity from climate–energy and habitat heterogeneity for explaining animal geographic patterns. Ecology and Evolution, 2016, 6, 1515-1526.	0.8	28
29	Beyond just seaâ€level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Global Change Biology, 2016, 22, 1-11.	4.2	206
30	Compact development and VMT—Environmental determinism, self-selection, or some of both?. Environment and Planning B: Planning and Design, 2016, 43, 737-755.	1.7	49
31	Urban sprawl as a risk factor in motor vehicle crashes. Urban Studies, 2016, 53, 247-266.	2.2	74
32	Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	6.0	16
33	Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 2016, 529, 390-393.	13.7	564
34	Does urban sprawl hold down upward mobility?. Landscape and Urban Planning, 2016, 148, 80-88.	3.4	114
35	Taking a systems approach to ecological systems. Journal of Vegetation Science, 2015, 26, 1025-1027.	1.1	7
36	Landscape structure affects specialists but not generalists in naturally fragmented grasslands. Ecology, 2015, 96, 3323-3331.	1.5	33

#	Article	IF	CITATIONS
37	Do shrubs reduce the adverse effects of grazing on soil properties?. Ecohydrology, 2015, 8, 1503-1513.	1.1	34
38	From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology. Pedobiologia, 2015, 58, 65-72.	0.5	287
39	Structural equation modeling. , 2015, , 168-199.		60
40	A Synopsis of Short-Term Response to Alternative Restoration Treatments in Sagebrush-Steppe: The SageSTEP Project. Rangeland Ecology and Management, 2014, 67, 584-598.	1.1	19
41	Structural equation models of VMT growth in US urbanised areas. Urban Studies, 2014, 51, 3079-3096.	2.2	34
42	Causal networks clarify productivity–richness interrelations, bivariate plots do not. Functional Ecology, 2014, 28, 787-798.	1.7	106
43	Longâ€ŧerm effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. Journal of Applied Ecology, 2014, 51, 1414-1424.	1.9	181
44	Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert Shrublands of Western North America. Ecosystems, 2014, 17, 360-375.	1.6	336
45	Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. Journal of Ecology, 2014, 102, 447-455.	1.9	71
46	Resilience and Resistance of Sagebrush Ecosystems: Implications for State and Transition Models and Management Treatments. Rangeland Ecology and Management, 2014, 67, 440-454.	1.1	195
47	Quantifying restoration effectiveness using multiâ€scale habitat models: implications for sageâ€grouse in the Great Basin. Ecosphere, 2014, 5, 1-32.	1.0	96
48	Getting the Message Across: Using Ecological Integrity to Communicate with Resource Managers. , 2014, , 199-230.		5
49	Evidence that acidificationâ€induced declines in plant diversity and productivity are mediated by changes in belowâ€ground communities and soil properties in a semiâ€arid steppe. Journal of Ecology, 2013, 101, 1322-1334.	1.9	201
50	Streams in the urban heat island: spatial and temporal variability in temperature. Freshwater Science, 2013, 32, 309-326.	0.9	111
51	An algorithmic and information-theoretic approach to multimetric index construction. Ecological Indicators, 2013, 26, 14-23.	2.6	24
52	Direct and indirect effects of land use on floral resources and flowerâ€visiting insects across an urban landscape. Oikos, 2013, 122, 682-694.	1.2	103
53	A causal examination of the effects of confounding factors on multimetric indices. Ecological Indicators, 2013, 29, 411-419.	2.6	21
54	Predicting ecosystem stability from community composition and biodiversity. Ecology Letters, 2013, 16, 617-625.	3.0	251

#	Article	IF	CITATIONS
55	Temporal shifts in topâ€down vs. bottomâ€up control of epiphytic algae in a seagrass ecosystem. Ecology, 2013, 94, 510-520.	1.5	111
56	How does pedogenesis drive plant diversity?. Trends in Ecology and Evolution, 2013, 28, 331-340.	4.2	165
57	Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. Journal of Arid Environments, 2013, 94, 96-104.	1.2	38
58	Conditions favouring <i><scp>B</scp>romus tectorum</i> dominance of endangered sagebrush steppe ecosystems. Journal of Applied Ecology, 2013, 50, 1039-1049.	1.9	177
59	Combined Effects of Compact Development, Transportation Investments, and Road User Pricing on Vehicle Miles Traveled in Urbanized Areas. Transportation Research Record, 2013, 2397, 117-124.	1.0	15
60	Response to Comments on "Productivity Is a Poor Predictor of Plant Species Richness― Science, 2012, 335, 1441-1441.	6.0	30
61	Guidelines for a graphâ€theoretic implementation of structural equation modeling. Ecosphere, 2012, 3, 1-44.	1.0	419
62	A general theory of multimetric indices and their properties. Methods in Ecology and Evolution, 2012, 3, 773-781.	2.2	45
63	Biodiversity loss and its impact on humanity. Nature, 2012, 486, 59-67.	13.7	4,969
64	Local richness along gradients in the Siskiyou herb flora: R. H. Whittaker revisited. Ecology, 2011, 92, 108-120.	1.5	32
65	Productivity Is a Poor Predictor of Plant Species Richness. Science, 2011, 333, 1750-1753.	6.0	463
66	Landscapeâ€scale analyses suggest both nutrient and antipredator advantages to Serengeti herbivore hotspots. Ecology, 2010, 91, 1519-1529.	1.5	116
67	On the specification of structural equation models for ecological systems. Ecological Monographs, 2010, 80, 67-87.	2.4	649
68	Ecological contingency in the effects of climatic warming on forest herb communities. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19362-19367.	3.3	87
69	Predicting performance for ecological restoration: a case study using Spartina alterniflora. Ecological Applications, 2010, 20, 192-204.	1.8	25
70	Climate change effects on an endemicâ€rich edaphic flora: resurveying Robert H. Whittaker's Siskiyou sites (Oregon, USA). Ecology, 2010, 91, 3609-3619.	1.5	113
71	Untangling the biological contributions to soil stability in semiarid shrublands. Ecological Applications, 2009, 19, 110-122.	1.8	148
72	Elevated CO ₂ enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with seaâ€level rise. Journal of Ecology, 2009, 97, 67-77.	1.9	118

#	Article	IF	CITATIONS
73	Local versus landscapeâ€scale effects of savanna trees on grasses. Journal of Ecology, 2009, 97, 1337-1345.	1.9	88
74	Beneath the veil: plant growth form influences the strength of species richness–productivity relationships in forests. Global Ecology and Biogeography, 2009, 18, 416-425.	2.7	49
75	Delayed conifer mortality after fuel reduction treatments: interactive effects of fuel, fire intensity, and bark beetles. , 2009, 19, 321-337.		38
76	Structural Equation Modeling and Ecological Experiments. , 2009, , 19-45.		31
77	Representing general theoretical concepts in structural equation models: the role of composite variables. Environmental and Ecological Statistics, 2008, 15, 191-213.	1.9	184
78	Structural Equation Modeling for Observational Studies. Journal of Wildlife Management, 2008, 72, 14-22.	0.7	125
79	Favorable environments and the persistence of naturally rare species. Conservation Letters, 2008, 1, 65-74.	2.8	30
80	Do Non-native Plant Species Affect the Shape of Productivity-diversity Relationships. American Midland Naturalist, 2008, 159, 55.	0.2	5
81	Long-term dynamics of leafy spurge (Euphorbia esula) and its biocontrol agent, flea beetles in the genus Aphthona. Biological Control, 2008, 47, 250-256.	1.4	32
82	SAVANNA TREE DENSITY, HERBIVORES, AND THE HERBACEOUS COMMUNITY: BOTTOM-UP VS. TOP-DOWN EFFECTS. Ecology, 2008, 89, 2228-2238.	1.5	178
83	RANK CLOCKS AND PLANT COMMUNITY DYNAMICS. Ecology, 2008, 89, 3534-3541.	1.5	89
84	Forage Nutritive Quality in the Serengeti Ecosystem: The Roles of Fire and Herbivory. American Naturalist, 2007, 170, 343-357.	1.0	98
85	Biogeographic Affinity Helps Explain Productivityâ€Richness Relationships at Regional and Local Scales. American Naturalist, 2007, 170, S5-S15.	1.0	87
86	Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis. Journal of Vegetation Science, 2007, 18, 231.	1.1	15
87	Short-term disruption of a leafy spurge (Euphorbia esula) biocontrol program following herbicide application. Biological Control, 2007, 40, 1-8.	1.4	10
88	Occurrence of Oral Deformities in Larval Anurans. Copeia, 2007, 2007, 449-458.	1.4	28
89	HABITAT RELATIONSHIPS OF BIRDS OVERWINTERING IN A MANAGED COASTAL PRAIRIE. Wilson Journal of Ornithology, 2007, 119, 189-197.	0.1	16
90	Responses of Prairie Arthropod Communities to Fire and Fertilizer: Balancing Plant and Arthropod Conservation. American Midland Naturalist, 2007, 157, 92-105.	0.2	36

#	Article	IF	CITATIONS
91	Environmental and plant community determinants of species loss following nitrogen enrichment. Ecology Letters, 2007, 10, 596-607.	3.0	293
92	Does species diversity limit productivity in natural grassland communities?. Ecology Letters, 2007, 10, 680-689.	3.0	351
93	Effects of nutrient loading and extreme rainfall events on coastal tallgrass prairies: invasion intensity, vegetation responses, and carbon and nitrogen distribution. Global Change Biology, 2007, 13, 2184-2192.	4.2	20
94	Species richness and soil properties in <i>Pinus ponderosa</i> forests: A structural equation modeling analysis. Journal of Vegetation Science, 2007, 18, 231-242.	1.1	33
95	Large-scale causes of variation in the serpentine vegetation of California. Plant and Soil, 2007, 293, 121-132.	1.8	28
96	Cultural Diversity, Economic Development and Societal Instability. PLoS ONE, 2007, 2, e929.	1.1	16
97	A Structural Equation Model Analysis Of Postfire Plant Diversity In California Shrublands. , 2006, 16, 503-514.		166
98	INVASION IN A DIVERSITY HOTSPOT: EXOTIC COVER AND NATIVE RICHNESS IN THE CALIFORNIAN SERPENTINE FLORA. Ecology, 2006, 87, 695-703.	1.5	57
99	REGIONAL AND LOCAL SPECIES RICHNESS IN AN INSULAR ENVIRONMENT: SERPENTINE PLANTS IN CALIFORNIA. Ecological Monographs, 2006, 76, 41-56.	2.4	157
100	A multivariate model of plant species richness in forested systems: old-growth montane forests with a long history of fire. Oikos, 2006, 114, 60-70.	1.2	30
101	Evaluation of non-destructive methods for estimating biomass in marshes of the upper Texas, USA coast. Wetlands, 2006, 26, 278-282.	0.7	13
102	Habitat associations of chorusing anurans in the Lower Mississippi River Alluvial Valley. Wetlands, 2006, 26, 736-744.	0.7	10
103	A multivariate model of plant species richness in forested systems: old-growth montane forests with a long history of fire. Oikos, 2006, 114, 60-70.	1.2	26
104	Interpreting the Results from Multiple Regression and Structural Equation Models. Bulletin of the Ecological Society of America, 2005, 86, 283-295.	0.2	284
105	Multivariate control of plant species richness and community biomass in blackland prairie. Oikos, 2004, 106, 151-157.	1.2	65
106	Effects of Invasive Alien Plants on Fire Regimes. BioScience, 2004, 54, 677.	2.2	1,193
107	Temporal dynamics of leafy spurge (Euphorbia esula) and two species of flea beetles (Aphthona spp.) used as biological control agents. Biological Control, 2004, 29, 207-214.	1.4	25
108	Examining the relationship between environmental variables and ordination axes using latent variables and structural equation modeling. , 2003, , 171-193.		7

#	Article	IF	CITATIONS
109	Effects of disturbance on germination and seedling establishment in a coastal prairie grassland: a test of the competitive release hypothesis. Journal of Ecology, 2002, 90, 291-302.	1.9	145
110	Identifying Determinants of Nations' Wetland Management Programs Using Structural Equation Modeling: An Exploratory Analysis. Environmental Management, 2001, 27, 859-868.	1.2	20
111	Difficulties with estimating and interpreting species pools and the implications for understanding patterns of diversity. Folia Geobotanica, 2001, 36, 71-83.	0.4	39
112	The roles of community biomass and species pools in the regulation of plant diversity. Oikos, 2001, 92, 193-207.	1.2	113
113	THE IMPORTANCE OF COMPETITION IN REGULATING PLANT SPECIES ABUNDANCE ALONG A SALINITY GRADIENT. Ecology, 2001, 82, 62-69.	1.5	82
114	Vegetation associations in a rare community type – coastal tallgrass prairie. Plant Ecology, 2000, 147, 105-115.	0.7	16
115	Factors associated with plant species richness in a coastal tallâ€grass prairie. Journal of Vegetation Science, 2000, 11, 443-452.	1.1	45
116	Growth and invasive potential ofSapium sebiferum(Euphorbiaceae) within the coastal prairie region: the effects of soil and moisture regime. American Journal of Botany, 2000, 87, 1099-1106.	0.8	51
117	The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, Imperata cylindrica (Poaceae). American Journal of Botany, 2000, 87, 1279-1286.	0.8	48
118	The effects of soil flooding on the establishment of cogongrass (Imperata cylindrica), a nonindigenous invader of the Southeastern United States. Wetlands, 2000, 20, 300-306.	0.7	14
119	EFFECTS OF ENVIRONMENTAL CHANGE ON PLANT SPECIES DENSITY: COMPARING PREDICTIONS WITH EXPERIMENTS. Ecology, 1999, 80, 882-890.	1.5	52
120	The factors controlling species density in herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics, 1999, 2, 1-28.	1.1	438
121	The Relationship between Species Density and Community Biomass in Grazed and Ungrazed Coastal Meadows. Oikos, 1999, 85, 398.	1.2	89
122	The effects of landscape position on plant species density: Evidence of past environmental effects in a coastal wetland. Ecoscience, 1999, 6, 381-391.	0.6	27
123	Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. Oecologia, 1998, 117, 527-535.	0.9	81
124	The interactive effects of fire and herbivory on a coastal marsh in Louisiana. Wetlands, 1998, 18, 1-8.	0.7	43
125	Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. Journal of Ecology, 1998, 86, 974-982.	1.9	82
126	Factors influencing cattail abundance in the northern Everglades. Aquatic Botany, 1998, 60, 265-280.	0.8	144

#	Article	IF	CITATIONS
127	Long-term dynamics of Typha populations. Aquatic Botany, 1998, 61, 137-146.	0.8	32
128	On the Use of Path Analysis and Related Procedures for the Investigation of Ecological Problems. American Naturalist, 1998, 152, 151-159.	1.0	99
129	HERBIVORE EFFECTS ON PLANT SPECIES DENSITY AT VARYING PRODUCTIVITY LEVELS. Ecology, 1998, 79, 1586-1594.	1.5	116
130	A Structural Equation Model of Plant Species Richness and Its Application to a Coastal Wetland. American Naturalist, 1997, 149, 436-460.	1.0	253
131	The effects of herbivory on neighbor interactions along a coastal marsh gradient. American Journal of Botany, 1997, 84, 709-715.	0.8	36
132	The influence of vines on an oligohaline marsh community: results of a removal and fertilization study. Oecologia, 1997, 112, 403-411.	0.9	16
133	The Potential Impact of Herbivores on the Susceptibility of the Marsh Plant Sagittaria lancifolia to Saltwater Intrusion in Coastal Wetlands. Estuaries and Coasts, 1996, 19, 13.	1.7	49
134	The effects of vertebrate herbivory on plant community structure in the coastal marshes of the Pearl River, Louisiana, USA. Wetlands, 1995, 15, 68-73.	0.7	63
135	In search of the Holy Grail: explanations for the coexistence of plant species. Trends in Ecology and Evolution, 1995, 10, 263-264.	4.2	24
136	On the Measurement of Plant Competition Intensity. Ecology, 1995, 76, 305-308.	1.5	198
137	The interactive effects of herbivory and fire on an oligohaline marsh, Little Lake, Louisiana, USA. Wetlands, 1994, 14, 82-87.	0.7	24
138	Plant Competition in Relation to Neighbor Biomass: An Intercontinental Study with POA Pratensis. Ecology, 1994, 75, 1753-1760.	1.5	120
139	The Relationship between Species Richness and Community Biomass: The Importance of Environmental Variables. Oikos, 1994, 70, 271.	1.2	267
140	The effects of habitat productivity on competition intensity. Trends in Ecology and Evolution, 1993, 8, 229-230.	4.2	100
141	The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany, 1993, 44, 159-180.	0.8	229
142	The Examination of a Competition Matrix for Transitivity and Intransitive Loops. Oikos, 1993, 68, 91.	1.2	37
143	HIGH CARBON DIOXIDE CONCENTRATIONS IN AERENCHYMA OF TYPHA LATIFOLIA. American Journal of Botany, 1992, 79, 415-418.	0.8	26
144	Size bias in traditional analyses of substitutive competition experiments. Oecologia, 1992, 90, 429-434.	0.9	52

#	Article	IF	CITATIONS
145	High Carbon Dioxide Concentrations in Aerenchyma of Typha latifolia. American Journal of Botany, 1992, 79, 415.	0.8	29
146	THE INCIDENCE AND EFFECTS OF HYBRIDIZATION BETWEEN CULTIVATED RICE AND ITS RELATED WEED RED RICE (<i>ORYZA SATIVA</i> L.). Evolution; International Journal of Organic Evolution, 1990, 44, 1000-1008.	1.1	134
147	Plant community structure in an oligohaline tidal marsh. Plant Ecology, 1990, 90, 93-107.	1.2	52
148	SHADE TOLERANCE AND ITS EFFECT ON THE SEGREGATION OF TWO SPECIES OF LOUISIANA IRIS AND THEIR HYBRIDS. American Journal of Botany, 1990, 77, 100-107.	0.8	49
149	RELATIONSHIPS BETWEEN FLOODING TOLERANCE, LIFE HISTORY, AND SHORTâ€TERM COMPETITIVE PERFORMANCE IN THREE SPECIES OF POLYGONUM. American Journal of Botany, 1990, 77, 381-387.	0.8	35
150	The Incidence and Effects of Hybridization between Cultivated Rice and its Related Weed Red Rice (Oryza sativa L.). Evolution; International Journal of Organic Evolution, 1990, 44, 1000.	1.1	80
151	On the Relationship between Plant Traits and Competitive Ability. , 1990, , 51-65.		153
152	RELATIONSHIPS BETWEEN FLOODING TOLERANCE, LIFE HISTORY, AND SHORT-TERM COMPETITIVE PERFORMANCE IN THREE SPECIES OF POLYGONUM. , 1990, 77, 381.		21
153	Shade Tolerance and its Effect on the Segregation of Two Species of Louisiana Iris and their Hybrids. American Journal of Botany, 1990, 77, 100.	0.8	16
154	EFFECTS OF WATER DEPTH ON TYPHA LATIFOLIA AND TYPHA DOMINGENSIS. American Journal of Botany, 1989, 76, 762-768.	0.8	151
155	Effects of Water Depth on Typha latifolia and Typha domingensis. American Journal of Botany, 1989, 76, 762.	0.8	93
156	The effects of nutrient additions on mixtures of Typha latifolia L. and Typha domingensis pers. along a water-depth gradient. Aquatic Botany, 1988, 31, 83-92.	0.8	66
157	The Effects of Plant Age on the Ability to Predict Mixture Performance from Monoculture Growth. Journal of Ecology, 1988, 76, 152.	1.9	13
158	The Impact of Preemption on the Zonation of Two Typha Species Along Lakeshores. Ecological Monographs, 1987, 57, 283-303.	2.4	114
159	THE BIOLOGY OF CANADIAN WEEDS.: 73. <i>Typha latifolia</i> L., <i>Typha angustifolia</i> L. and <i>Typha xglauca</i> Godr Canadian Journal of Plant Science, 1986, 66, 361-379.	0.3	149
160	Relative effects of Justicia americana litter on germination, seedlings and established plants of Polygonum lapathifolium. Aquatic Botany, 1986, 23, 341-349.	0.8	16
161	Juveniles vs. Adult Competitive Abilities in Plants: Size-dependence in Cattails (Typha). Ecology, 1985, 66, 1630-1638.	1.5	55
162	Effects of Tubificid Worms on the Germination and Establishment of Typha. Ecology, 1984, 65, 1689-1693.	1.5	12

#	Article	IF	CITATIONS
163	Autotoxic inhibition of seed germination by Typha latifolia: an evaluation. Oecologia, 1983, 59, 366-369.	0.9	35
164	Niche differentiation between two rhizomatous plant species: <i>Typha latifolia</i> and <i>Typha angustifolia</i> . Canadian Journal of Botany, 1982, 60, 46-57.	1.2	141
165	Variations in growth and reproduction within populations of two rhizomatous plant species: Typha latifolia and Typha angustifolia. Oecologia, 1982, 53, 258-263.	0.9	30
166	Habitat Partitioning and Competitive Displacement in Cattails (Typha): Experimental Field Studies. American Naturalist, 1981, 118, 463-474.	1.0	326
167	Phenotypic and Genotypic Components of Growth and Reproduction in Typha Latifolia: Experimental Studies in Marshes of Differing Successional Maturity. Ecology, 1981, 62, 789-801.	1.5	80
168	Effects of size and growth rate on vegetative reproduction in Typha. Oecologia, 1981, 50, 158-161.	0.9	34
169	Discoveries and novel insights in ecology using structural equation modeling. Ideas in Ecology and Evolution, 0, 12, .	0.1	9
170	A 'Weight of Evidence' approach to evaluating structural equation models. One Ecosystem, 0, 5, .	0.0	27
171	General guidance for custom-built structural equation models. One Ecosystem, 0, 7, .	0.0	4