
Xiao-Peng He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6576068/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fluorescent probes for the detection of disease-associated biomarkers. Science Bulletin, 2022, 67, 853-878.	9.0	110
2	Targeted delivery of maytansine to liver cancer cells <i>via</i> galactose-modified supramolecular two-dimensional glycomaterial. Chemical Communications, 2022, 58, 5029-5032.	4.1	6
3	A homogeneous high-throughput array for the detection and discrimination of influenza A viruses. CheM, 2022, 8, 1750-1761.	11.7	24
4	Dual-Channel Fluorescent Probe for the Simultaneous Monitoring of Peroxynitrite and Adenosine-5′-triphosphate in Cellular Applications. Journal of the American Chemical Society, 2022, 144, 174-183.	13.7	89
5	Tuning the Solid- and Solution-State Fluorescence of the Iron-Chelator Deferasirox. Journal of the American Chemical Society, 2022, 144, 7382-7390.	13.7	22
6	Fluorescence Analysis of Circulating Exosomes for Breast Cancer Diagnosis Using a Sensor Array and Deep Learning. ACS Sensors, 2022, 7, 1524-1532.	7.8	27
7	Fluorescent probes and functional materials for biomedical applications. Frontiers of Chemical Science and Engineering, 2022, 16, 1425-1437.	4.4	12
8	Fluorescent probes for the imaging of lipid droplets in live cells. Coordination Chemistry Reviews, 2021, 427, 213577.	18.8	123
9	TCF-ALP: a fluorescent probe for the selective detection of Staphylococcus bacteria and application in "smart―wound dressings. Biomaterials Science, 2021, 9, 4433-4439.	5.4	14
10	Metal–organic frameworks (MOFs) as host materials for the enhanced delivery of biomacromolecular therapeutics. Chemical Communications, 2021, 57, 12098-12110.	4.1	51
11	Graphene nanoribbon-based supramolecular ensembles with dual-receptor targeting function for targeted photothermal tumor therapy. Chemical Science, 2021, 12, 11089-11097.	7.4	16
12	Deferasirox (ExJade): An FDA-Approved AlEgen Platform with Unique Photophysical Properties. Journal of the American Chemical Society, 2021, 143, 1278-1283.	13.7	46
13	<i>In vitro</i> studies of deferasirox derivatives as potential organelle-targeting traceable anti-cancer therapeutics. Chemical Communications, 2021, 57, 5678-5681.	4.1	9
14	The Evaluation of Ester Functionalised TCFâ€Based Fluorescent Probes for the Detection of Bacterial Species. Israel Journal of Chemistry, 2021, 61, 234-238.	2.3	13
15	Long-Wavelength AIE-Based Fluorescent Probes for Mitochondria-Targeted Imaging and Photodynamic Therapy of Hepatoma Cells. ACS Applied Bio Materials, 2021, 4, 7016-7024.	4.6	15
16	Low-dimensional nanomaterials for antibacterial applications. Journal of Materials Chemistry B, 2021, 9, 3640-3661.	5.8	36
17	Small-molecule fluorescence-based probes for interrogating major organ diseases. Chemical Society Reviews, 2021, 50, 9391-9429.	38.1	176
18	Near-Infrared Light-Triggered Bacterial Eradication Using a Nanowire Nanocomposite of Graphene Nanoribbons and Chitosan-Coated Silver Nanoparticles. Frontiers in Chemistry, 2021, 9, 767847.	3.6	4

#	Article	IF	CITATIONS
19	Ferrocene-Labelled Electroactive Aptamer-Based Sensors (Aptasensors) for Glycated Haemoglobin. Molecules, 2021, 26, 7077.	3.8	2
20	A general strategy to the intracellular sensing of glycosidases using AIE-based glycoclusters. Chemical Science, 2021, 13, 247-256.	7.4	25
21	Dual enzyme activated fluorescein based fluorescent probe. Frontiers of Chemical Science and Engineering, 2020, 14, 117-121.	4.4	15
22	Protein encapsulation: a new approach for improving the capability of small-molecule fluorogenic probes. Chemical Science, 2020, 11, 1107-1113.	7.4	49
23	Fluorescent glycoconjugates and their applications. Chemical Society Reviews, 2020, 49, 593-641.	38.1	49
24	Cyclodextrin-Based Peptide Self-Assemblies (Spds) That Enhance Peptide-Based Fluorescence Imaging and Antimicrobial Efficacy. Journal of the American Chemical Society, 2020, 142, 1925-1932.	13.7	36
25	A Supramolecularâ€Based Dualâ€Wavelength Phototherapeutic Agent with Broadâ€Spectrum Antimicrobial Activity Against Drugâ€Resistant Bacteria. Angewandte Chemie, 2020, 132, 3687-3693.	2.0	18
26	A Supramolecularâ€Based Dualâ€Wavelength Phototherapeutic Agent with Broadâ€Spectrum Antimicrobial Activity Against Drugâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2020, 59, 3658-3664.	13.8	94
27	Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chemical Society Reviews, 2020, 49, 5110-5139.	38.1	516
28	A glycoconjugate-based gold nanoparticle approach for the targeted treatment of <i>Pseudomonas aeruginosa</i> biofilms. Nanoscale, 2020, 12, 23234-23240.	5.6	21
29	Pinkment: a synthetic platform for the development of fluorescent probes for diagnostic and theranostic applications. Chemical Science, 2020, 11, 8567-8571.	7.4	26
30	Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. Journal of the American Chemical Society, 2020, 142, 18005-18013.	13.7	118
31	Manganese(II) Texaphyrin: A Paramagnetic Photoacoustic Contrast Agent Activated by Near-IR Light. Journal of the American Chemical Society, 2020, 142, 16156-16160.	13.7	37
32	Coumarin-based fluorescent probe for the rapid detection of peroxynitrite â€~AND' biological thiols. RSC Advances, 2020, 10, 13496-13499.	3.6	14
33	Transition metal chelators, pro-chelators, and ionophores as small molecule cancer chemotherapeutic agents. Chemical Society Reviews, 2020, 49, 3726-3747.	38.1	115
34	Protein Encapsulation: A Nanocarrier Approach to the Fluorescence Imaging of an Enzyme-Based Biomarker. Frontiers in Chemistry, 2020, 8, 389.	3.6	22
35	Toward multifunctional anticancer therapeutics: post-synthetic carbonate functionalisation of asymmetric Au(i) bis-N-heterocyclic carbenes. Chemical Communications, 2020, 56, 7877-7880.	4.1	12
36	Supramolecular Assembly of TPEâ€Based Glycoclusters with Dicyanomethyleneâ€4 <i>H</i> â€pyran (DM) Fluorescent Probes Improve Their Properties for Peroxynitrite Sensing and Cell Imaging. Chemistry - A European Journal, 2020, 26, 14445-14452.	3.3	8

#	Article	IF	CITATIONS
37	Metal-based imaging agents: progress towards interrogating neurodegenerative disease. Chemical Society Reviews, 2020, 49, 2886-2915.	38.1	56
38	Supramolecular fluorogenic peptide sensor array based on graphene oxide for the differential sensing of ebola virus. Chemical Communications, 2020, 56, 5735-5738.	4.1	22
39	Bioâ€Conjugated Advanced Materials for Targeted Disease Theranostics. Advanced Functional Materials, 2020, 30, 1907906.	14.9	51
40	Self-assembled sialyllactosyl probes with aggregation-enhanced properties for ratiometric detection and blocking of influenza viruses. Science Bulletin, 2019, 64, 1902-1909.	9.0	22
41	Reaction-Based Fluorescent Probes for the Detection and Imaging of Reactive Oxygen, Nitrogen, and Sulfur Species. Accounts of Chemical Research, 2019, 52, 2582-2597.	15.6	442
42	Coumarin-based fluorescent â€~AND' logic gate probes for the detection of homocysteine and a chosen biological analyte. RSC Advances, 2019, 9, 26425-26428.	3.6	9
43	A Leucine Aminopeptidase-Activated Theranostic Prodrug for Cancer Diagnosis and Chemotherapy. ACS Applied Bio Materials, 2019, 2, 4904-4910.	4.6	15
44	ESIPT-based fluorescence probe for the ratiometric detection of superoxide. New Journal of Chemistry, 2019, 43, 2875-2877.	2.8	29
45	Self-Assembled 2D Glycoclusters for the Targeted Delivery of Theranostic Agents to Triple-Negative Breast Cancer Cells. ACS Applied Materials & Interfaces, 2019, 11, 22181-22187.	8.0	15
46	Self-Assembled Thin-Layer Glycomaterials With a Proper Shell Thickness for Targeted and Activatable Cell Imaging. Frontiers in Chemistry, 2019, 7, 294.	3.6	1
47	Sensors, Imaging Agents, and Theranostics to Help Understand and Treat Reactive Oxygen Species Related Diseases. Small Methods, 2019, 3, 1900013.	8.6	72
48	Multivalent Glycosheets for Double Light–Driven Therapy of Multidrugâ€Resistant Bacteria on Wounds. Advanced Functional Materials, 2019, 29, 1806986.	14.9	55
49	Thiophenol detection using an AIE fluorescent probe through self-assembly with TPE-based glycoclusters. Organic and Biomolecular Chemistry, 2019, 17, 9251-9256.	2.8	16
50	Targeted photoswitchable imaging of intracellular glutathione by a photochromic glycosheet sensor. Beilstein Journal of Organic Chemistry, 2019, 15, 2380-2389.	2.2	3
51	Peroxynitrite Activated Drug Conjugate Systems Based on a Coumarin Scaffold Toward the Application of Theranostics. Frontiers in Chemistry, 2019, 7, 775.	3.6	11
52	A Simple Nearâ€Infrared Fluorescent Probe for the Detection of Peroxynitrite. ChemistryOpen, 2019, 8, 1407-1409.	1.9	14
53	Fluorescence imaging of a potential diagnostic biomarker for breast cancer cells using a peptide-functionalized fluorogenic 2D material. Chemical Communications, 2019, 55, 13235-13238.	4.1	7
54	Fluorogenic probes for disease-relevant enzymes. Chemical Society Reviews, 2019, 48, 683-722.	38.1	451

#	Article	IF	CITATIONS
55	Fluorescence Imaging of Alzheimer's Disease with a Flat Ensemble Formed between a Quinoline–Malononitrile AlEgen and Thin‣ayer Molybdenum Disulfide. ChemBioChem, 2019, 20, 1856-1860.	2.6	15
56	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie, 2018, 130, 3424-3429.	2.0	12
57	Biodegradable macroporous scaffold with nano-crystal surface microstructure for highly effective osteogenesis and vascularization. Journal of Materials Chemistry B, 2018, 6, 1658-1667.	5.8	24
58	Supramolecular Nanostructures of Structurally Defined Graphene Nanoribbons in the Aqueous Phase. Angewandte Chemie - International Edition, 2018, 57, 3366-3371.	13.8	52
59	Lightening Up Membrane Receptors with Fluorescent Molecular Probes and Supramolecular Materials. CheM, 2018, 4, 246-268.	11.7	51
60	The development of a novel AND logic based fluorescence probe for the detection of peroxynitrite and CSH. Chemical Science, 2018, 9, 3672-3676.	7.4	136
61	Supramolecular glyco-poly-cyclodextrin functionalized thin-layer manganese dioxide for targeted stimulus-responsive bioimaging. Chemical Communications, 2018, 54, 4037-4040.	4.1	11
62	Supramolecular glycorhodamine-polymer dot ensembles for the homogeneous, fluorogenic analysis of lectins. Carbohydrate Research, 2018, 455, 1-4.	2.3	5
63	Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chemical Society Reviews, 2018, 47, 8842-8880.	38.1	993
64	Tetraphenylethylene-based glycoclusters with aggregation-induced emission (AIE) properties as high-affinity ligands of bacterial lectins. Organic and Biomolecular Chemistry, 2018, 16, 8804-8809.	2.8	25
65	An ESIPT Probe for the Ratiometric Imaging of Peroxynitrite Facilitated by Binding to AÎ ² -Aggregates. Journal of the American Chemical Society, 2018, 140, 14267-14271.	13.7	155
66	Preferential Colonization of Osteoblasts Over Co-cultured Bacteria on a Bifunctional Biomaterial Surface. Frontiers in Microbiology, 2018, 9, 2219.	3.5	24
67	ESIPT-based fluorescence probe for the rapid detection of peroxynitrite â€~AND' biological thiols. Chemical Communications, 2018, 54, 11336-11339.	4.1	64
68	â€~AND'-based fluorescence scaffold for the detection of ROS/RNS and a second analyte. Chemical Communications, 2018, 54, 8466-8469.	4.1	47
69	Photocontrolled Fluorescence "Double-Check―Bioimaging Enabled by a Glycoprobe–Protein Hybrid. Journal of the American Chemical Society, 2018, 140, 8671-8674.	13.7	116
70	Osteogenesis, vascularization and osseointegration of a bioactive multiphase macroporous scaffold in the treatment of large bone defects. Journal of Materials Chemistry B, 2018, 6, 4197-4204.	5.8	14
71	Glypican-3-targeted precision diagnosis of hepatocellular carcinoma on clinical sections with a supramolecular 2D imaging probe. Theranostics, 2018, 8, 3268-3274.	10.0	35
72	Supramolecular Polymer Dot Ensemble for Ratiometric Detection of Lectins and Targeted Delivery of Imaging Agents. ACS Applied Materials & Interfaces, 2017, 9, 3272-3276.	8.0	12

#	Article	IF	CITATIONS
73	2D Materials: Fluorogenic 2D Peptidosheet Unravels CD47 as a Potential Biomarker for Profiling Hepatocellular Carcinoma and Cholangiocarcinoma Tissues (Adv. Mater. 5/2017). Advanced Materials, 2017, 29, .	21.0	0
74	Fluorogenic bis-triazolyl galactoprobe–metal complex for full-aqueous analysis of sulfide ion. Sensors and Actuators B: Chemical, 2017, 246, 197-201.	7.8	30
75	Graphene oxide-enhanced cytoskeleton imaging and mitosis tracking. Chemical Communications, 2017, 53, 3373-3376.	4.1	7
76	Taking Orders from Light: Photo-Switchable Working/Inactive Smart Surfaces for Protein and Cell Adhesion. ACS Applied Materials & Interfaces, 2017, 9, 8498-8507.	8.0	35
77	GPCR Activation and Endocytosis Induced by a 2D Material Agonist. ACS Applied Materials & Interfaces, 2017, 9, 14709-14715.	8.0	9
78	Conjugated polyelectrolytes with galactose-containing side chains for targeted hepatoma cell imaging. Chemical Communications, 2017, 53, 5625-5628.	4.1	11
79	A fluorogenic 2D glycosheet for the simultaneous identification of human- and avian-receptor specificity in influenza viruses. Materials Horizons, 2017, 4, 431-436.	12.2	26
80	Supramolecular assembly of fluorogenic glyco-dots from perylenediimide-based glycoclusters for targeted imaging of cancer cells. Chemical Communications, 2017, 53, 11937-11940.	4.1	13
81	Remote light-controlled intracellular target recognition by photochromic fluorescent glycoprobes. Nature Communications, 2017, 8, 987.	12.8	141
82	Multiplexed photoluminescent sensors: towards improved disease diagnostics. Chemical Society Reviews, 2017, 46, 6687-6696.	38.1	118
83	Photochromism and molecular logic gate operation of a water-compatible bis-glycosyl diarylethene. Chemical Communications, 2017, 53, 9494-9497.	4.1	47
84	Supramolecular core–glycoshell polythiophene nanodots for targeted imaging and photodynamic therapy. Chemical Communications, 2017, 53, 9793-9796.	4.1	21
85	Perylenediimide-based glycoclusters as high affinity ligands of bacterial lectins: synthesis, binding studies and anti-adhesive properties. Organic and Biomolecular Chemistry, 2017, 15, 10037-10043.	2.8	14
86	Long-wavelength fluorescent boronate probes for the detection and intracellular imaging of peroxynitrite. Chemical Communications, 2017, 53, 12822-12825.	4.1	112
87	Targeting Osteocytes to Attenuate Early Breast Cancer Bone Metastasis by Theranostic Upconversion Nanoparticles with Responsive Plumbagin Release. ACS Nano, 2017, 11, 7259-7273.	14.6	100
88	Sialylglycan-Assembled Supra-Dots for Ratiometric Probing and Blocking of Human-Infecting Influenza Viruses. ACS Applied Materials & Interfaces, 2017, 9, 25164-25170.	8.0	15
89	Low-dimensional materials facilitate the conjugation between fluorogenic boronic acids and saccharides. Materials Chemistry Frontiers, 2017, 1, 61-64.	5.9	6
90	Fluorogenic 2D Peptidosheet Unravels CD47 as a Potential Biomarker for Profiling Hepatocellular Carcinoma and Cholangiocarcinoma Tissues. Advanced Materials, 2017, 29, 1604253.	21.0	37

#	Article	IF	CITATIONS
91	Vibration-Induced-Emission (VIE) for imaging amyloid \hat{I}^2 fibrils. Faraday Discussions, 2017, 196, 395-402.	3.2	26
92	D-A-D fluorogenic probe for the rapid imaging of amyloid β plaques inÂvivo. Dyes and Pigments, 2017, 136, 224-228.	3.7	19
93	Fluorescent glycoprobes: a sweet addition for improved sensing. Chemical Communications, 2017, 53, 82-90.	4.1	62
94	Targeted multimodal theranostics via biorecognition controlled aggregation of metallic nanoparticle composites. Chemical Science, 2016, 7, 4004-4008.	7.4	43
95	Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydrate Research, 2016, 429, 1-22.	2.3	109
96	Supramolecular Ensembles Formed between Charged Conjugated Polymers and Glycoprobes for the Fluorogenic Recognition of Receptor Proteins. ACS Applied Materials & Interfaces, 2016, 8, 13601-13606.	8.0	20
97	Probing Mannose-Binding Proteins That Express on Live Cells and Pathogens with a Diffusion-to-Surface Ratiometric Graphene Electrosensor. ACS Applied Materials & Interfaces, 2016, 8, 25137-25141.	8.0	19
98	Chelation as a strategy to reinforce cationic copper surface protection in acidic solutions. RSC Advances, 2016, 6, 68351-68356.	3.6	2
99	Innenrücktitelbild: Rapid Identification of the Receptor-Binding Specificity of Influenza A Viruses by Fluorogenic Glycofoldamers (Angew. Chem. 45/2016). Angewandte Chemie, 2016, 128, 14385-14385.	2.0	0
100	Benzo[c]carbazole derivatives produced by an effective Diels–Alder reaction: synthesis and structure–activity-relationship for surface coating. RSC Advances, 2016, 6, 75162-75165.	3.6	6
101	Rapid Identification of the Receptorâ€Binding Specificity of Influenzaâ€A Viruses by Fluorogenic Glycofoldamers. Angewandte Chemie - International Edition, 2016, 55, 13995-13999.	13.8	39
102	Targeted Intracellular Production of Reactive Oxygen Species by a 2D Molybdenum Disulfide Glycosheet. Advanced Materials, 2016, 28, 9356-9363.	21.0	108
103	A supramolecular pyrenyl glycoside-coated 2D MoS ₂ composite electrode for selective cell capture. Chemical Communications, 2016, 52, 11689-11692.	4.1	13
104	Aminochlorination of Alkenes with CFBSA. European Journal of Organic Chemistry, 2016, 2016, 4526-4533.	2.4	14
105	Photoswitchable arene ruthenium and pentamethylcyclopentadienyl rhodium complexes containing o-sulfonamide azobenzene ligands: Synthesis, characterization and cytotoxicity. Journal of Organometallic Chemistry, 2016, 820, 111-119.	1.8	11
106	Ratiometric Detection of <i>β</i> â€Amyloid and Discrimination from Lectins by a Supramolecular AIE Glyconanoparticle. Small, 2016, 12, 6562-6567.	10.0	44
107	Foldable glycoprobes capable of fluorogenic crosslinking of biomacromolecules. Chemical Science, 2016, 7, 6325-6329.	7.4	32
108	Rapid Identification of the Receptorâ€Binding Specificity of Influenzaâ€A Viruses by Fluorogenic Glycofoldamers. Angewandte Chemie, 2016, 128, 14201-14205.	2.0	5

#	Article	IF	CITATIONS
109	Intracellular pH sensing and targeted imaging of lysosome by a galactosyl naphthalimide-piperazine probe. Dyes and Pigments, 2016, 133, 372-379.	3.7	39
110	Irreversible destruction of amyloid fibril plaques by conjugated polymer based fluorogenic nanogrenades. Journal of Materials Chemistry B, 2016, 4, 4502-4506.	5.8	11
111	Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS ₂ and graphene oxide. Chemical Communications, 2016, 52, 9418-9421.	4.1	21
112	Photoluminescence Architectures for Disease Diagnosis: From Graphene to Thin-Layer Transition Metal Dichalcogenides and Oxides. Small, 2016, 12, 144-160.	10.0	78
113	N-Oxyamide-linked glycoglycerolipid coated AuNPs for receptor-targeting imaging and drug delivery. Chemical Communications, 2016, 52, 2284-2287.	4.1	16
114	Interlocked supramolecular glycoconjugated polymers for receptor-targeting theranostics. Chemical Communications, 2016, 52, 3821-3824.	4.1	17
115	Simultaneous Detection of Diverse Glycoligandâ€Receptor Recognitions Using a Singleâ€Excitation, Dualâ€Emission Graphene Composite. Advanced Functional Materials, 2015, 25, 3483-3487.	14.9	41
116	Triazole-Linked Glycolipids Enhance the Susceptibility of MRSA to β-Lactam Antibiotics. ACS Medicinal Chemistry Letters, 2015, 6, 793-797.	2.8	21
117	"Clicked―galactosyl anthraquinone on graphene electrodes for the label-free impedance detection of live cancer cells. Dyes and Pigments, 2015, 121, 312-315.	3.7	18
118	Receptor-targeting fluorescence imaging and theranostics using a graphene oxide based supramolecular glycocomposite. Journal of Materials Chemistry B, 2015, 3, 9182-9185.	5.8	33
119	Colorimetric and Plasmonic Detection of Lectins Using Core–Shell Gold Glyconanoparticles Prepared by Copper-Free Click Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 1874-1878.	8.0	41
120	Ratiometric glyco-probe for transient determination of thiophenol in full aqueous solution and river water. Dyes and Pigments, 2015, 116, 52-57.	3.7	45
121	Selective fluorogenic imaging of hepatocellular H ₂ S by a galactosyl azidonaphthalimide probe. Chemical Communications, 2015, 51, 3653-3655.	4.1	121
122	Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes. Chemical Science, 2015, 6, 1996-2001.	7.4	40
123	Recent progress in quantum dot based sensors. RSC Advances, 2015, 5, 26644-26653.	3.6	81
124	Glycosylation enhances the aqueous sensitivity and lowers the cytotoxicity of a naphthalimide zinc ion fluorescence probe. Chemical Communications, 2015, 51, 11852-11855.	4.1	59
125	Probing sugar–lectin recognitions in the near-infrared region using glyco-diketopyrrolopyrrole with aggregation-induced-emission. Biosensors and Bioelectronics, 2015, 65, 420-426.	10.1	51
126	Mixed galactolipid anomers accentuate apoptosis of multiple myeloma cells by inducing DNA damage. Carbohydrate Research, 2015, 408, 114-118.	2.3	8

#	Article	IF	CITATIONS
127	Quick Serological Detection of a Cancer Biomarker with an Agglutinated Supramolecular Glycoprobe. Analytical Chemistry, 2015, 87, 9078-9083.	6.5	22
128	An insight into graphene oxide associated fluorogenic sensing of glycodye–lectin interactions. Journal of Materials Chemistry B, 2015, 3, 6656-6661.	5.8	24
129	Probing disease-related proteins with fluorogenic composite materials. Chemical Society Reviews, 2015, 44, 4239-4248.	38.1	108
130	A â€~Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level. Scientific Reports, 2015, 4, 5513.	3.3	18
131	Fluorogenic supramolecular complexes formed between pyrenyl-β-cyclodextrin and glyco-rhodamine for the selective detection of lectins. Chemical Communications, 2014, 50, 14141-14144.	4.1	25
132	Anthraquinonyl glycoside facilitates the standardization of graphene electrodes for the impedance detection of lectins. Chemistry Central Journal, 2014, 8, 67.	2.6	15
133	A per-acetyl glycosyl rhodamine as a novel fluorescent ratiometric probe for mercury (II). Dyes and Pigments, 2014, 102, 273-277.	3.7	36
134	Hepatoma-selective imaging of heavy metal ions using a â€~clicked' galactosylrhodamine probe. Chemical Communications, 2014, 50, 11735-11737.	4.1	69
135	One-Step Click Engineering Considerably Ameliorates the Practicality of an Unqualified Rhodamine Probe. ACS Applied Materials & Interfaces, 2014, 6, 19600-19605.	8.0	42
136	â€~Pungent' Copper Surface Resists Acid Corrosion in Strong HCl Solutions. Industrial & Engineering Chemistry Research, 2014, 53, 64-69.	3.7	18
137	Fluorogenic Resveratrol-Confined Graphene Oxide For Economic and Rapid Detection Of Alzheimer's Disease. ACS Applied Materials & Interfaces, 2014, 6, 5379-5382.	8.0	79
138	Target-Specific Imaging of Transmembrane Receptors Using Quinonyl Glycosides Functionalized Quantum Dots. Analytical Chemistry, 2014, 86, 5502-5507.	6.5	35
139	Selective Fluorescence Detection of Monosaccharides Using a Material Composite Formed between Graphene Oxide and Boronate-Based Receptors. ACS Applied Materials & Interfaces, 2014, 6, 10078-10082.	8.0	47
140	Identification of a new bis-amino acid glycoside selectively toxic to multiple myeloma cells. Carbohydrate Research, 2014, 394, 39-42.	2.3	3
141	Substitution Pattern Reverses the Fluorescence Response of Coumarin Glycoligands upon Coordination with Silver (I). Scientific Reports, 2014, 4, 4252.	3.3	34
142	Revisit of a dipropargyl rhodamine probe reveals its alternative ion sensitivity in both a solution and live cells. Analyst, The, 2013, 138, 7087.	3.5	14
143	Bis-triazolyl indoleamines as unique "off–approach–on―chemosensors for copper and fluorine. Analyst, The, 2013, 138, 2808.	3.5	31
144	Comparative studies on the enantioselective fluorination of oxindoles with structurally modified N-fluorobenzenesulfonimides. Tetrahedron, 2013, 69, 4933-4937.	1.9	33

#	Article	IF	CITATIONS
145	Click Synthesis of Triazolyl Phenylalaninyl and Tyrosinyl Derivatives as New Protein Tyrosine Phosphatase Inhibitors. Journal of Heterocyclic Chemistry, 2013, 50, 684-688.	2.6	4
146	Highly Enantioselective Construction of 3â€Hydroxy Oxindoles through a Decarboxylative Aldol Addition of Trifluoromethyl αâ€Fluorinated <i>gem</i> â€Diols to <i>N</i> â€Benzyl Isatins. Angewandte Chemie - International Edition, 2013, 52, 5566-5570.	13.8	99
147	Fluorogenic Probing of Specific Recognitions between Sugar Ligands and Glycoprotein Receptors on Cancer Cells by an Economic Graphene Nanocomposite. Advanced Materials, 2013, 25, 4097-4101.	21.0	113
148	Capturing intercellular sugar-mediated ligand-receptor recognitions via a simple yet highly biospecific interfacial system. Scientific Reports, 2013, 3, 2293.	3.3	41
149	Discovery of a sensitive Cu(<scp>ii</scp>)-cyanide "off–on―sensor based on new C-glycosyl triazolyl bis-amino acid scaffold. Organic and Biomolecular Chemistry, 2012, 10, 555-560.	2.8	56
150	Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl. Corrosion Science, 2012, 57, 220-227.	6.6	105
151	Concise Cu ^I -Catalyzed Azide–Alkyne 1,3-Dipolar Cycloaddition Reaction Ligation Remarkably Enhances the Corrosion Inhibitive Potency of Natural Amino Acids for Mild Steel in HCl. Industrial & Engineering Chemistry Research, 2012, 51, 7160-7169.	3.7	30
152	Construction of triazolyl bidentate glycoligands (TBCs) by grafting of 3-azidocoumarin to epimeric pyranoglycosides via a fluorogenic dual click reaction. Carbohydrate Research, 2012, 363, 38-42.	2.3	16
153	Identification of diverse 1,2,3-triazole-connected benzyl glycoside-serine/threonine conjugates as potent corrosion inhibitors for mild steel in HCl. Corrosion Science, 2012, 64, 64-73.	6.6	75
154	The Regio-specific solvent controlled asymmetric Strecker reaction of trifluoromethyl α,β-unsaturated N-tert-butanesulfinyl ketimines with trimethylsilyl cyanide. Journal of Fluorine Chemistry, 2012, 144, 102-107.	1.7	16
155	Research on the structure–surface adsorptive activity relationships of triazolyl glycolipid derivatives for mild steel in HCI. Carbohydrate Research, 2012, 354, 32-39.	2.3	22
156	The anomeric mixture of some O-galactolipid derivatives is more toxic against cancer cells than either anomer alone. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 2030-2032.	2.2	12
157	Microwave-assisted construction of triazole-linked amino acid–glucoside conjugates as novel PTP1B inhibitors. New Journal of Chemistry, 2011, 35, 622.	2.8	31
158	Epimeric Monosaccharideâ^'Quinone Hybrids on Gold Electrodes toward the Electrochemical Probing of Specific Carbohydrateâ^'Protein Recognitions. Journal of the American Chemical Society, 2011, 133, 3649-3657.	13.7	75
159	Click to a focused library of benzyl 6-triazolo(hydroxy)benzoic glucosides: Novel construction of PTP1B inhibitors on a sugar scaffold. European Journal of Medicinal Chemistry, 2011, 46, 4212-4218.	5.5	27
160	Discovering the distinct inhibitory effects between C4-epimeric glycosyl amino acids: new insight into the development of protein tyrosine phosphatase inhibitors. Glycoconjugate Journal, 2011, 28, 493-497.	2.7	13
161	Synthesis of novel 6-triazologlycolipids via click chemistry and their preliminary cytotoxicity assessments. Molecular Diversity, 2011, 15, 889-900.	3.9	17
162	Preparation of triazole-linked glycosylated α-ketocarboxylic acid derivatives as new PTP1B inhibitors. Carbohydrate Research, 2011, 346, 140-145.	2.3	35

#	Article	IF	CITATIONS
163	Synthesis of (Glycopyranosylâ€triazolyl)â€purines and Their Inhibitory Activities against Protein Tyrosine Phosphatase 1B (PTP1B). Chemistry and Biodiversity, 2011, 8, 2035-2044.	2.1	14
164	Facile fabrication of promising protein tyrosine phosphatase (PTP) inhibitor entities based on †clicked' serine/threonine–monosaccharide hybrids. Bioorganic and Medicinal Chemistry, 2011, 19, 3892-3900.	3.0	29
165	A unique and rapid approach toward the efficient development of novel protein tyrosine phosphatase (PTP) inhibitors based on â€~clicked' pseudo-glycopeptides. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 1092-1096.	2.2	33
166	Disclosing the distinct interfacial behaviors of structurally and configurationally diverse triazologlycolipids. Carbohydrate Research, 2011, 346, 1320-1326.	2.3	10
167	Highly optically selective and electrochemically active chemosensor for copper (II) based on triazole-linked glucosyl anthraquinone. Dyes and Pigments, 2011, 88, 391-395.	3.7	91
168	Creation of 3,4-bis-triazolocoumarin–sugar conjugates via flourogenic dual click chemistry and their quenching specificity with silver(I) in aqueous media. Tetrahedron, 2011, 67, 3343-3347.	1.9	56
169	â€~Click' to bidentate bis-triazolyl sugar derivatives with promising biological and optical features. Tetrahedron Letters, 2011, 52, 894-898.	1.4	30
170	6-O-Amino-2-O-carboxymethyl Glucopyranoside as Novel Glycoaminoxy Acid Building Block for the Construction of Oligosaccharide Mimetics. Synthesis, 2011, 2011, 2761-2766.	2.3	2
171	Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry. Bulletin of the Korean Chemical Society, 2011, 32, 1000-1006.	1.9	7
172	Triazole-linked Benzylated Glucosyl, Galactosyl, and Mannosyl Monomers and Dimers as Novel Sugar Scaffold-based PTP1B Inhibitors. Chemistry Letters, 2010, 39, 1261-1263.	1.3	18
173	Expeditious preparation of triazole-linked glycolipids via microwave accelerated click chemistry and their electrochemical and biological assessments. Tetrahedron, 2010, 66, 9974-9980.	1.9	46
174	Construction of 6-Triazole-Linked Mannopyranosyl Serine and Threonine as Novel Sugar Amino Acid Mimics. Bulletin of the Korean Chemical Society, 2010, 31, 1055-1057.	1.9	8
175	Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity. Bulletin of the Korean Chemical Society, 2010, 31, 3359-3365.	1.9	12
176	A Shortcut to the Preparation of Naturally Occurring Arbutin. Bulletin of the Korean Chemical Society, 2010, 31, 1825-1826.	1.9	4
177	Synthesis of β-C-glycopyranosyl-1,4-naphthoquinone derivatives and their cytotoxic activity. Carbohydrate Research, 2008, 343, 773-779.	2.3	13