
Shintaro Kobayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575680/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gold Nanoparticles as a Vaccine Platform: Influence of Size and Shape on Immunological Responses <i>in Vitro</i> and <i>in Vivo</i> . ACS Nano, 2013, 7, 3926-3938.	14.6	533
2	Autophagy inhibits viral genome replication and gene expression stages in West Nile virus infection. Virus Research, 2014, 191, 83-91.	2.2	40
3	Detection and characterization of a novel polyomavirus in wild rodents. Journal of General Virology, 2011, 92, 789-795.	2.9	34
4	Development of a rapid and quantitative method for the analysis of viral entry and release using a NanoLuc luciferase complementation assay. Virus Research, 2018, 243, 69-74.	2.2	34
5	Escape of Tick-Borne Flavivirus from 2′- <i>C</i> -Methylated Nucleoside Antivirals Is Mediated by a Single Conservative Mutation in NS5 That Has a Dramatic Effect on Viral Fitness. Journal of Virology, 2017, 91, .	3.4	33
6	Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus. Virology, 2017, 505, 102-112.	2.4	32
7	Valosin-containing protein (VCP/p97) plays a role in the replication of West Nile virus. Virus Research, 2017, 228, 114-123.	2.2	32
8	Isolation and Characterization of a Novel Alphaherpesvirus in Fruit Bats. Journal of Virology, 2014, 88, 9819-9829.	3.4	29
9	Dendritic transport of tick-borne flavivirus RNA by neuronal granules affects development of neurological disease. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9960-9965.	7.1	29
10	Rab8b Regulates Transport of West Nile Virus Particles from Recycling Endosomes. Journal of Biological Chemistry, 2016, 291, 6559-6568.	3.4	28
11	West Nile virus capsid protein inhibits autophagy by AMP-activated protein kinase degradation in neurological disease development. PLoS Pathogens, 2020, 16, e1008238.	4.7	28
12	Accumulation of ubiquitinated proteins is related to West Nile virusâ€induced neuronal apoptosis. Neuropathology, 2012, 32, 398-405.	1.2	26
13	Shape-dependent adjuvanticity of nanoparticle-conjugated RNA adjuvants for intranasal inactivated influenza vaccines. RSC Advances, 2018, 8, 16527-16536.	3.6	26
14	Divergent bufavirus harboured in megabats represents a new lineage of parvoviruses. Scientific Reports, 2016, 6, 24257.	3.3	22
15	Detection of coronavirus genomes in Moluccan naked-backed fruit bats in Indonesia. Archives of Virology, 2015, 160, 1113-1118.	2.1	21
16	Role of JC virus agnoprotein in virion formation. Microbiology and Immunology, 2012, 56, 639-646.	1.4	20
17	Virus-like particles with removable cyclodextrins enable glutathione-triggered drug release in cells. Molecular BioSystems, 2013, 9, 501.	2.9	19
18	Identification of a novel polyomavirus from vervet monkeys in Zambia. Journal of General Virology, 2013, 94, 1357-1364	2.9	18

SHINTARO KOBAYASHI

#	Article	IF	CITATIONS
19	Detection of novel polyomaviruses in fruit bats in Indonesia. Archives of Virology, 2015, 160, 1075-1082.	2.1	18
20	Serological evidence of Zika virus infection in non-human primates in Zambia. Archives of Virology, 2019, 164, 2165-2170.	2.1	16
21	Identification and analysis of host proteins that interact with the 3′-untranslated region of tick-borne encephalitis virus genomic RNA. Virus Research, 2018, 249, 52-56.	2.2	14
22	Development of a serodiagnostic multi-species ELISA against tick-borne encephalitis virus using subviral particles. Ticks and Tick-borne Diseases, 2016, 7, 723-729.	2.7	13
23	Systemic Candidiasis and Mesenteric Mast Cell Tumor with Multiple Metastases in a Dog. Journal of Veterinary Medical Science, 2009, 71, 229-232.	0.9	12
24	Cysteine Residues in the Major Capsid Protein, Vp1, of the JC Virus Are Important for Protein Stability and Oligomer Formation. PLoS ONE, 2013, 8, e76668.	2.5	11
25	Targeting of severe fever with thrombocytopenia syndrome virus structural proteins to the ERGIC (endoplasmic reticulum Golgi intermediate compartment) and Golgi complex . Biomedical Research, 2018, 39, 27-38.	0.9	11
26	Serologic Evidence of Tick-Borne Encephalitis Virus Infection in a Patient with Suspected Lyme Disease in Japan. American Journal of Tropical Medicine and Hygiene, 2018, 99, 180-181.	1.4	11
27	Detection of novel gammaherpesviruses from fruit bats in Indonesia. Journal of Medical Microbiology, 2018, 67, 415-422.	1.8	10
28	Development and characterization of recombinant tick-borne encephalitis virus expressing mCherry reporter protein: A new tool for high-throughput screening of antiviral compounds, and neutralizing antibody assays. Antiviral Research, 2021, 185, 104968.	4.1	9
29	Amino acid 159 of the envelope protein affects viral replication and T-cell infiltration by West Nile virus in intracranial infection. Scientific Reports, 2020, 10, 7168.	3.3	8
30	Cross-Reactivity of Secondary Antibodies against African Rodents and Application for Sero-Surveillance. Journal of Veterinary Medical Science, 2013, 75, 819-825.	0.9	7
31	A novel reverse genetics system for production of infectious West Nile virus using homologous recombination in mammalian cells. Journal of Virological Methods, 2017, 240, 14-20.	2.1	7
32	A Retrospective Epidemiological Study of Tick-Borne Encephalitis Virus in Patients with Neurological Disorders in Hokkaido, Japan. Microorganisms, 2020, 8, 1672.	3.6	7
33	Characterization of tick-borne encephalitis virus isolated from a tick in central Hokkaido in 2017. Journal of General Virology, 2020, 101, 497-509.	2.9	7
34	Tubulopapillary Carcinoma with Spindle Cell Metaplasia of the Mammary Gland in a Cat. Journal of Veterinary Medical Science, 2008, 70, 479-481.	0.9	6
35	Development of a serodiagnostic IgM-ELISA for tick-borne encephalitis virus using subviral particles with strep-tag. Ticks and Tick-borne Diseases, 2018, 9, 1391-1394.	2.7	3
36	Duck Tembusu virus induces stronger cellular responses than Japanese encephalitis virus in primary duck neurons and fibroblasts. Microbiology and Immunology, 2021, 65, 481-491.	1.4	3

SHINTARO KOBAYASHI

#	Article	IF	CITATIONS
37	Characterization of tick-borne encephalitis virus isolated from tick infesting dog in central Hokkaido in 2018. Ticks and Tick-borne Diseases, 2022, 13, 101900.	2.7	3
38	Non-Cytopathic Bovine Viral Diarrhea Virus Infection Inhibits Differentiation of Bovine Neural Stem/progenitor Cells into Astrocytes in Vitro. Journal of Veterinary Medical Science, 2010, 72, 903-907.	0.9	2
39	Role of the C-Terminal Region of Vervet Monkey Polyomavirus 1 VP1 in Virion Formation. Journal of Veterinary Medical Science, 2014, 76, 637-644.	0.9	2
40	Development of a highly specific serodiagnostic ELISA for West Nile virus infection using subviral particles. Scientific Reports, 2021, 11, 9213.	3.3	2
41	A targeted approach with nanopore sequencing for the universal detection and identification of flaviviruses. Scientific Reports, 2021, 11, 19031.	3.3	2
42	Dual control of tick-borne encephalitis virus replication by autophagy in mouse macrophages. Virus Research, 2022, 315, 198778.	2.2	2
43	Yâ€shaped RNA Secondary Structure of a Noncoding Region in the Genomic RNA of Tickâ€Borne Encephalitis Virus Affects Pathogenicity. Microbiology and Immunology, 2022, , .	1.4	1
44	Analysis of the relationship between replication of the Hokkaido genotype of Puumala orthohantavirus and autophagy. Virus Research, 2022, 318, 198830.	2.2	0