List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575612/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Synthetic mRNA Cell Reprogramming Method Using <i>CYCLIN D1</i> Promotes DNA rEpair, Generating Improved Genetically Stable Human Induced Pluripotent Stem Cells. Stem Cells, 2021, 39, 866-881.	3.2	14
2	Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging, 2021, 13, 12308-12333.	3.1	11
3	SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	30
4	Sirtuins in hematopoiesis and blood malignancies. , 2021, , 373-391.		2
5	Niacin. , 2020, , 287-293.		2
6	SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Research, 2020, 48, 665-681.	14.5	39
7	Sirtuins in female meiosis and in reproductive longevity. Molecular Reproduction and Development, 2020, 87, 1175-1187.	2.0	12
8	SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1. Science Advances, 2020, 6, eaaz2590.	10.3	33
9	Sirtuin 1 Inhibiting Thiocyanates (S1th)—A New Class of Isotype Selective Inhibitors of NAD+ Dependent Lysine Deacetylases. Frontiers in Oncology, 2020, 10, 657.	2.8	19
10	SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Research, 2019, 47, 7870-7885.	14.5	55
11	Chromatin regulation by Histone H4 acetylation at Lysine 16 during cell death and differentiation in the myeloid compartment. Nucleic Acids Research, 2019, 47, 5016-5037.	14.5	23
12	SIRT6-dependent cysteine monoubiquitination in the PRE-SET domain of Suv39h1 regulates the NF-κB pathway. Nature Communications, 2018, 9, 101.	12.8	46
13	Complex role of SIRT6 in NF-κB pathway regulation. Molecular and Cellular Oncology, 2018, 5, e1445942.	0.7	16
14	SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons. Cell Death and Disease, 2018, 9, 531.	6.3	26
15	An HP1 isoform-specific feedback mechanism regulates Suv39h1 activity under stress conditions. Epigenetics, 2017, 12, 166-175.	2.7	22
16	The microRNA-449 family inhibits TGF-β-mediated liver cancer cell migration by targeting SOX4. Journal of Hepatology, 2017, 66, 1012-1021.	3.7	102
17	Raising the list of SirT7 targets to a new level. Proteomics, 2017, 17, 1700137.	2.2	4
18	Activation-induced cytidine deaminase targets SUV4-20-mediated histone H4K20 trimethylation to class-switch recombination sites. Scientific Reports, 2017, 7, 7594	3.3	10

#	Article	IF	CITATIONS
19	Loss of <scp>SIRT</scp> 2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Aging Cell, 2017, 16, 1404-1413.	6.7	36
20	Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8352-E8361.	7.1	88
21	Mammalian HP1 Isoforms Have Specific Roles in Heterochromatin Structure and Organization. Cell Reports, 2017, 21, 2048-2057.	6.4	63
22	The Histone Code and Disease. , 2016, , 417-445.		1
23	<scp>SIRT</scp> 7 promotes genome integrity and modulates nonâ€homologous end joining <scp>DNA</scp> repair. EMBO Journal, 2016, 35, 1488-1503.	7.8	211
24	Arachidonic and oleic acid exert distinct effects on the DNA methylome. Epigenetics, 2016, 11, 321-334.	2.7	52
25	KAT6B Is a Tumor Suppressor Histone H3 Lysine 23 Acetyltransferase Undergoing Genomic Loss in Small Cell Lung Cancer. Cancer Research, 2015, 75, 3936-3945.	0.9	65
26	Sirtuinâ€dependent epigenetic regulation in the maintenance of genome integrity. FEBS Journal, 2015, 282, 1745-1767.	4.7	114
27	Sirtuins as a Double-Edged Sword in Cancer: From Molecular Mechanisms to Therapeutic Opportunities. , 2015, , 75-106.		0
28	Sirtuins in stress response: guardians of the genome. Oncogene, 2014, 33, 3764-3775.	5.9	91
29	The Embryonic Linker Histone H1 Variant of Drosophila, dBigH1, Regulates Zygotic Genome Activation. Developmental Cell, 2013, 26, 578-590.	7.0	91
30	The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes and Development, 2013, 27, 639-653.	5.9	232
31	Histone methyltransferase <i>Suv39h1</i> deficiency prevents <i>Myc</i> â€induced chromosomal instability in murine myeloid leukemias. Genes Chromosomes and Cancer, 2013, 52, 423-430.	2.8	10
32	The Diversity of Histone Versus Nonhistone Sirtuin Substrates. Genes and Cancer, 2013, 4, 148-163.	1.9	119
33	Methods to Study the Role of Sirtuins in Genome Stability. Methods in Molecular Biology, 2013, 1077, 273-283.	0.9	2
34	A View on the Role of Epigenetics in the Biology of Malaria Parasites. PLoS Pathogens, 2012, 8, e1002943.	4.7	43
35	Drosophila melanogaster linker histone dH1 is required for transposon silencing and to preserve genome integrity. Nucleic Acids Research, 2012, 40, 5402-5414.	14.5	51
36	Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1. Journal of Proteomics, 2012, 75, 4124-4138.	2.4	38

#	Article	IF	CITATIONS
37	A Big Step for SIRT7, One Giant Leap for Sirtuins… in Cancer. Cancer Cell, 2012, 21, 719-721.	16.8	15
38	Stabilization of Suv39H1 by SirT1 Is Part of Oxidative Stress Response and Ensures Genome Protection. Molecular Cell, 2011, 42, 210-223.	9.7	115
39	The Dual Role of Sirtuins in Cancer. Genes and Cancer, 2011, 2, 648-662.	1.9	281
40	Dietary Restriction: Standing Up for Sirtuins. Science, 2010, 329, 1012-1013.	12.6	63
41	At the crossroad of lifespan, calorie restriction, chromatin and disease: Meeting on sirtuins. Cell Cycle, 2010, 9, 1907-1912.	2.6	20
42	The conserved role of sirtuins in chromatin regulation. International Journal of Developmental Biology, 2009, 53, 303-322.	0.6	102
43	Calorie restriction and the exercise of chromatin. Genes and Development, 2009, 23, 1849-1869.	5.9	130
44	Activation properties of GAGA transcription factor. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2008, 1779, 312-317.	1.9	9
45	Characterization of Drosophila melanogaster JmjC+N histone demethylases. Nucleic Acids Research, 2008, 36, 2852-2863.	14.5	58
46	Sirtuins in Biology and Disease. , 2008, , 73-104.		1
47	Sirtuins in Biology and Disease. , 2008, , 73-104.		2
48	SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes and Development, 2007, 21, 920-928.	5.9	409
49	L3MBTL1, a Histone-Methylation-Dependent Chromatin Lock. Cell, 2007, 129, 915-928.	28.9	318
50	NAD+-dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene, 2007, 26, 5505-5520.	5.9	259
51	SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature, 2007, 450, 440-444.	27.8	380
52	SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes and Development, 2006, 20, 1256-1261.	5.9	535
53	Composition and histone substrates of polycomb repressive group complexes change during cellular differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 1859-1864.	7.1	371
54	Steps Toward Understanding the Inheritance of Repressive Methyl-Lysine Marks in Histones. Cold Spring Harbor Symposia on Quantitative Biology, 2004, 69, 171-182.	1.1	14

#	Article	IF	CITATIONS
55	Human SirT1 Interacts with Histone H1 and Promotes Formation of Facultative Heterochromatin. Molecular Cell, 2004, 16, 93-105.	9.7	796
56	The Constantly Changing Face of Chromatin. Science of Aging Knowledge Environment: SAGE KE, 2003, 2003, 4re-4.	0.8	147
57	Analysis of the Effects of Daunorubicin and WP631 on Transcription. Current Medicinal Chemistry, 2001, 8, 1-8.	2.4	46
58	Functional Mapping of the GAGA Factor Assigns Its Transcriptional Activity to the C-terminal Glutamine-rich Domain. Journal of Biological Chemistry, 2000, 275, 19461-19468.	3.4	32
59	The N-terminal POZ Domain of CAGA Mediates the Formation of Oligomers That Bind DNA with High Affinity and Specificity. Journal of Biological Chemistry, 1999, 274, 16461-16469.	3.4	95
60	The GAGA Factor of Drosophila Binds Triple-stranded DNA. Journal of Biological Chemistry, 1998, 273, 24640-24648.	3.4	41