
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6575145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	124I-Iodo-DPA-713 Positron Emission Tomography in a Hamster Model of SARS-CoV-2 Infection. Molecular Imaging and Biology, 2022, 24, 135-143.	2.6	16
2	<scp>BCG</scp> invokes superior <scp>STING</scp> â€mediated innate immune response over radiotherapy in a carcinogen murine model of urothelial cancer. Journal of Pathology, 2022, 256, 223-234.	4.5	9
3	Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium tuberculosis Virulence. MBio, 2022, 13, e0386521.	4.1	15
4	Re-engineered BCG overexpressing cyclic di-AMP augments trained immunity and exhibits improved efficacy against bladder cancer. Nature Communications, 2022, 13, 878.	12.8	33
5	<i>Mycobacterium tuberculosis</i> : A Pathogen That Can Hold Its Breath a Long Time. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 10-12.	5.6	2
6	Design, Synthesis and Biological Evaluation of N-phenylindole Derivatives as Pks13 Inhibitors againstMycobacterium tuberculosis. Molecules, 2022, 27, 2844.	3.8	6
7	Allosteric cooperation in \hat{I}^2 -lactam binding to a non-classical transpeptidase. ELife, 2022, 11, .	6.0	1
8	Sex Differences in Active Pulmonary Tuberculosis Outcomes in Mali, West Africa. American Journal of Tropical Medicine and Hygiene, 2022, 107, 433-440.	1.4	3
9	Post translational modifications in tuberculosis: ubiquitination paradox. Autophagy, 2021, 17, 814-817.	9.1	12
10	Design, synthesis and antimycobacterial evaluation of novel adamantane and adamantanol analogues effective against drug-resistant tuberculosis. Bioorganic Chemistry, 2021, 106, 104486.	4.1	12
11	Immunologic goalposts for TB vaccine development. Cell Host and Microbe, 2021, 29, 158-159.	11.0	0
12	Design and synthesis of mycobacterial pks13 inhibitors: Conformationally rigid tetracyclic molecules. European Journal of Medicinal Chemistry, 2021, 213, 113202.	5.5	15
13	Therapeutic targeting with DABILâ€4 depletes myeloid suppressor cells in 4T1 tripleâ€negative breast cancer model. Molecular Oncology, 2021, 15, 1330-1344.	4.6	15
14	Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chemical Biology and Drug Design, 2021, 97, 1137-1150.	3.2	9
15	Host-Directed Therapies: Modulating Inflammation to Treat Tuberculosis. Frontiers in Immunology, 2021, 12, 660916.	4.8	45
16	Therapeutic Potential of Coumestan Pks13 Inhibitors for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	12
17	Effective Host-Directed Therapy for Tuberculosis by Depletion of Myeloid-Derived Suppressor Cells and Related Cells Using a Diphtheria Toxin Fusion Protein. Journal of Infectious Diseases, 2021, 224, 1962-1972.	4.0	6
18	BCG turns 100: its nontraditional uses against viruses, cancer, and immunologic diseases. Journal of Clinical Investigation, 2021, 131, .	8.2	47

#	Article	lF	CITATIONS
19	Recombinant BCGs for tuberculosis and bladder cancer. Vaccine, 2021, 39, 7321-7331.	3.8	9
20	Short Communication: Genetic Variation in Human IL10 Proximal Promoter and Susceptibility to HIV-1 Infection in Mali, West Africa. AIDS Research and Human Retroviruses, 2021, 37, 57-61.	1.1	0
21	The integrated stress response mediates necrosis in murine Mycobacterium tuberculosis granulomas. Journal of Clinical Investigation, 2021, 131, .	8.2	27
22	The preclinical candidate indole-2-carboxamide improves immune responses to Mycobacterium tuberculosis infection in healthy subjects and individuals with type 2 diabetes. International Microbiology, 2020, 23, 161-170.	2.4	6
23	Bacillus Calmette-Guérin Overexpressing an Endogenous Stimulator of Interferon Genes Agonist Provides Enhanced Protection Against Pulmonary Tuberculosis. Journal of Infectious Diseases, 2020, 221, 1048-1056.	4.0	41
24	Assessing whether isoniazid is essential during the first 14 days of tuberculosis therapy: a phase 2a, open-label, randomised controlled trial. Lancet Microbe, The, 2020, 1, e84-e92.	7.3	6
25	Patients infected with Mycobacterium africanum versus Mycobacterium tuberculosis possess distinct intestinal microbiota. PLoS Neglected Tropical Diseases, 2020, 14, e0008230.	3.0	14
26	Design, synthesis, and biological evaluation of novel imidazo[1,2â€a]pyridinecarboxamides as potent antiâ€tuberculosis agents. Chemical Biology and Drug Design, 2020, 96, 1362-1371.	3.2	11
27	Design, synthesis, and biological evaluation of novel arylcarboxamide derivatives as anti-tubercular agents. RSC Advances, 2020, 10, 7523-7540.	3.6	24
28	Cavitary tuberculosis: the gateway of disease transmission. Lancet Infectious Diseases, The, 2020, 20, e117-e128.	9.1	69
29	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	8.2	26
30	Infectability of Human BrainSphere Neurons Suggests Neurotropism of SARS-CoV-2*. ALTEX: Alternatives To Animal Experimentation, 2020, 37, 665-671.	1.5	112
31	Association of Mycobacterium africanum Infection with Slower Disease Progression Compared with Mycobacterium tuberculosis in Malian Patients with Tuberculosis. American Journal of Tropical Medicine and Hygiene, 2020, 102, 36-41.	1.4	9
32	Getting to the point in point-of-care diagnostics for tuberculosis. Journal of Clinical Investigation, 2020, 130, 5671-5673.	8.2	5
33	Matrix Metalloproteinase Inhibition in a Murine Model of Cavitary Tuberculosis Paradoxically Worsens Pathology. Journal of Infectious Diseases, 2019, 219, 633-636.	4.0	22
34	Recent advances with Treg depleting fusion protein toxins for cancer immunotherapy. Immunotherapy, 2019, 11, 1117-1128.	2.0	15
35	<i>Corynebacterium diphtheriae</i> : Diphtheria Toxin, the <i>tox</i> Operon, and Its Regulation by Fe2 ⁺ Activation of apo-DtxR. Microbiology Spectrum, 2019, 7, .	3.0	21
36	Revisiting the β-Lactams for Tuberculosis Therapy with a Compound-Compound Synthetic Lethality Approach. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	4

#	Article	IF	CITATIONS
37	Second-generation IL-2 receptor-targeted diphtheria fusion toxin exhibits antitumor activity and synergy with anti–PD-1 in melanoma. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3100-3105.	7.1	56
38	TRAV1-2+ CD8+ T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis. Communications Biology, 2019, 2, 203.	4.4	60
39	Potential for breath test diagnosis of urease positive pathogens in lung infections. Journal of Breath Research, 2019, 13, 032002.	3.0	10
40	Advancing the Therapeutic Potential of Indoleamides for Tuberculosis. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	12
41	Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against <i>Mycobacterium tuberculosis</i> . Part II. Journal of Medicinal Chemistry, 2019, 62, 3575-3589.	6.4	26
42	Pharmacologic Exhaustion of Suppressor Cells with Tasquinimod Enhances Bacterial Clearance during Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 386-389.	5.6	10
43	Differential HLA allele frequency in <i>Mycobacterium africanum</i> vs <i>Mycobacterium tuberculosis</i> in Mali. Hla, 2019, 93, 24-31.	0.6	10
44	Pharmacokinetics of rifapentine and rifampin in a rabbit model of tuberculosis and correlation with clinical trial data. Science Translational Medicine, 2018, 10, .	12.4	40
45	Ex vivo culture of tumor cells from N-methyl-N-nitrosourea–induced bladder cancer in rats: Development of organoids and an immortalized cell line. Urologic Oncology: Seminars and Original Investigations, 2018, 36, 160.e23-160.e32.	1.6	13
46	Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2018, 61, 791-803.	6.4	56
47	Repetitive Aerosol Exposure Promotes Cavitary Tuberculosis and Enables Screening for Targeted Inhibitors of Extensive Lung Destruction. Journal of Infectious Diseases, 2018, 218, 53-63.	4.0	25
48	Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. Lancet Infectious Diseases, The, 2018, 18, e64-e75.	9.1	119
49	Diverse Cavity Types and Evidence that Mechanical Action on the Necrotic Granuloma Drives Tuberculous Cavitation. American Journal of Pathology, 2018, 188, 1666-1675.	3.8	16
50	Lysosomal Cathepsin Release Is Required for NLRP3-Inflammasome Activation by Mycobacterium tuberculosis in Infected Macrophages. Frontiers in Immunology, 2018, 9, 1427.	4.8	77
51	Organoid culture of bladder cancer cells. Investigative and Clinical Urology, 2018, 59, 149.	2.0	11
52	Bacterial subversion of <scp>cAMP</scp> signalling inhibits cathelicidin expression, which is required for innate resistance to <i>Mycobacterium tuberculosis</i> . Journal of Pathology, 2017, 242, 52-61.	4.5	30
53	Reply to Levis and Rendini. Journal of Infectious Diseases, 2017, 215, 1488-1489.	4.0	2
54	Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of <i>Mycobacterium abscessus</i> Infections. Journal of Medicinal Chemistry, 2017, 60, 5876-5888.	6.4	61

#	Article	IF	CITATIONS
55	Inhibition of innate immune cytosolic surveillance by an M. tuberculosis phosphodiesterase. Nature Chemical Biology, 2017, 13, 210-217.	8.0	96
56	Partners in Crime: Phenolic Glycolipids and Macrophages. Trends in Molecular Medicine, 2017, 23, 981-983.	6.7	2
57	Locking down metabolism. Nature Chemical Biology, 2017, 13, 925-926.	8.0	5
58	Suppressor Cell–Depleting Immunotherapy With Denileukin Diftitox is an Effective Host-Directed Therapy for Tuberculosis. Journal of Infectious Diseases, 2017, 215, 1883-1887.	4.0	28
59	Mycobacterium tuberculosis Induction of Heme Oxygenase-1 Expression Is Dependent on Oxidative Stress and Reflects Treatment Outcomes. Frontiers in Immunology, 2017, 8, 542.	4.8	37
60	Phosphodiesterase inhibitors as adjunctive therapies for tuberculosis. EBioMedicine, 2016, 4, 7-8.	6.1	7
61	REMap: Operon map of M.Âtuberculosis based on RNA sequence data. Tuberculosis, 2016, 99, 70-80.	1.9	8
62	The Non-Linear Child: Ontogeny, Isoniazid Concentration, and NAT2 Genotype Modulate Enzyme Reaction Kinetics and Metabolism. EBioMedicine, 2016, 11, 118-126.	6.1	17
63	Mycobacterium tuberculosis strains exhibit differential and strain-specific molecular signatures in pulmonary epithelial cells. Developmental and Comparative Immunology, 2016, 65, 321-329.	2.3	8
64	Blockade of the Kv1.3 K ⁺ Channel Enhances BCG Vaccine Efficacy by Expanding Central Memory T Lymphocytes. Journal of Infectious Diseases, 2016, 214, 1456-1464.	4.0	30
65	Indole-2-carboxamide-based MmpL3 Inhibitors Show Exceptional Antitubercular Activity in an Animal Model of Tuberculosis Infection. Journal of Medicinal Chemistry, 2016, 59, 6232-6247.	6.4	135
66	Paradoxical Hypersusceptibility of Drug-resistant M ycobacterium tuberculosis to β-lactam Antibiotics. EBioMedicine, 2016, 9, 170-179.	6.1	39
67	Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells. Tuberculosis, 2016, 97, 73-85.	1.9	25
68	Cathepsin K Contributes to Cavitation and Collagen Turnover in Pulmonary Tuberculosis. Journal of Infectious Diseases, 2016, 213, 618-627.	4.0	27
69	Targeting the cell wall of <i>Mycobacterium tuberculosis</i> : a molecular modeling investigation of the interaction of imipenem and meropenem with <i>L</i> ,Ci>D-transpeptidase 2. Journal of Biomolecular Structure and Dynamics, 2016, 34, 304-317.	3.5	18
70	The antifibrotic drug pirfenidone promotes pulmonary cavitation and drug resistance in a mouse model of chronic tuberculosis. JCI Insight, 2016, 1, e86017.	5.0	10
71	Whole Genome Sequencing of Mycobacterium africanum Strains from Mali Provides Insights into the Mechanisms of Geographic Restriction. PLoS Neglected Tropical Diseases, 2016, 10, e0004332.	3.0	41
72	Subtherapeutic concentrations of first-line anti-TB drugs in South African children treated according to current guidelines: the PHATISA study. Journal of Antimicrobial Chemotherapy, 2015, 70, 1115-1123.	3.0	57

#	Article	IF	CITATIONS
73	Computerâ€∎ided pulmonary image analysis in small animal models. Medical Physics, 2015, 42, 3896-3910.	3.0	15
74	Efficacy of Adjunctive Tofacitinib Therapy in Mouse Models of Tuberculosis. EBioMedicine, 2015, 2, 868-873.	6.1	25
75	Immunogenicity without Efficacy of an Adenoviral Tuberculosis Vaccine in a Stringent Mouse Model for Immunotherapy during Treatment. PLoS ONE, 2015, 10, e0127907.	2.5	7
76	Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules. Journal of Infectious Diseases, 2015, 212, 1827-1834.	4.0	20
77	Verapamil Increases the Bactericidal Activity of Bedaquiline against Mycobacterium tuberculosis in a Mouse Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 673-676.	3.2	58
78	In Vivo Prediction of Tuberculosis-Associated Cavity Formation in Rabbits. Journal of Infectious Diseases, 2015, 211, 481-485.	4.0	13
79	A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nature Medicine, 2015, 21, 401-406.	30.7	227
80	InÂVivo Biosynthesis of Terpene Nucleosides Provides Unique Chemical Markers of Mycobacterium tuberculosis Infection. Chemistry and Biology, 2015, 22, 516-526.	6.0	34
81	Latent and Active Tuberculosis Infection Increase Immune Activation in Individuals Co-Infected with HIV. EBioMedicine, 2015, 2, 334-340.	6.1	64
82	Mycobacterium tuberculosis TlyA Protein Negatively Regulates T Helper (Th) 1 and Th17 Differentiation and Promotes Tuberculosis Pathogenesis. Journal of Biological Chemistry, 2015, 290, 14407-14417.	3.4	35
83	Can the addition of verapamil to bedaquiline-containing regimens improve tuberculosis treatment outcomes? A novel approach to optimizing TB treatment. Future Microbiology, 2015, 10, 1257-1260.	2.0	15
84	Mutation of <i>Rv2887</i> , a <i>marR</i> -Like Gene, Confers Mycobacterium tuberculosis Resistance to an Imidazopyridine-Based Agent. Antimicrobial Agents and Chemotherapy, 2015, 59, 6873-6881.	3.2	25
85	Roflumilast, a Type 4 Phosphodiesterase Inhibitor, Shows Promising Adjunctive, Host-Directed Therapeutic Activity in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2015, 59, 7888-7890.	3.2	32
86	Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal. PLoS Medicine, 2015, 12, e1001880.	8.4	236
87	Aerosol Mycobacterium tuberculosis Infection Causes Rapid Loss of Diversity in Gut Microbiota. PLoS ONE, 2014, 9, e97048.	2.5	124
88	Revisiting Anti-tuberculosis Activity of Pyrazinamide in Mice. Mycobacterial Diseases: Tuberculosis & Leprosy, 2014, 04, 145.	0.1	11
89	Synthetic Lethality Reveals Mechanisms of Mycobacterium tuberculosis Resistance to β-Lactams. MBio, 2014, 5, e01767-14.	4.1	25
90	Efflux Inhibition with Verapamil Potentiates Bedaquiline in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 574-576.	3.2	145

#	Article	IF	CITATIONS
91	Nonclassical Transpeptidases of Mycobacterium tuberculosis Alter Cell Size, Morphology, the Cytosolic Matrix, Protein Localization, Virulence, and Resistance to β-Lactams. Journal of Bacteriology, 2014, 196, 1394-1402.	2.2	80
92	Crosstalk between Mycobacterium tuberculosis and the host cell. Seminars in Immunology, 2014, 26, 486-496.	5.6	74
93	Rapid in vivo detection of isoniazid-sensitive Mycobacterium tuberculosis by breath test. Nature Communications, 2014, 5, 4989.	12.8	10
94	Molecular Basis of Drug Resistance in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2014, 2, .	3.0	29
95	Expression of a Subset of Heat Stress Induced Genes of Mycobacterium tuberculosis Is Regulated by 3',5'-Cyclic AMP. PLoS ONE, 2014, 9, e89759.	2.5	20
96	Indoleamides are active against drug-resistant Mycobacterium tuberculosis. Nature Communications, 2013, 4, 2907.	12.8	130
97	Robust segmentation and accurate target definition for positron emission tomography images using Affinity Propagation. , 2013, , .		10
98	Rising to the challenge: new therapies for tuberculosis. Trends in Microbiology, 2013, 21, 493-501.	7.7	74
99	Acceleration of Tuberculosis Treatment by Adjunctive Therapy with Verapamil as an Efflux Inhibitor. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 600-607.	5.6	149
100	Adjuvant Host-Directed Therapy with Types 3 and 5 but Not Type 4 Phosphodiesterase Inhibitors Shortens the Duration of Tuberculosis Treatment. Journal of Infectious Diseases, 2013, 208, 512-519.	4.0	46
101	Low Levels of Peripheral CD161++CD8+ Mucosal Associated Invariant T (MAIT) Cells Are Found in HIV and HIV/TB Co-Infection. PLoS ONE, 2013, 8, e83474.	2.5	88
102	Mouse Model of Necrotic Tuberculosis Granulomas Develops Hypoxic Lesions. Journal of Infectious Diseases, 2012, 205, 595-602.	4.0	215
103	Risk of Tuberculosis Reactivation With Tofacitinib (CP-690550). Journal of Infectious Diseases, 2012, 205, 1705-1708.	4.0	46
104	Targeting the Cell Wall of Mycobacterium tuberculosis: Structure and Mechanism of L,D-Transpeptidase 2. Structure, 2012, 20, 2103-2115.	3.3	94
105	A screen for non-coding RNA in Mycobacterium tuberculosis reveals a cAMP-responsive RNA that is expressed during infection. Gene, 2012, 500, 85-92.	2.2	45
106	Role of Mycobacterium tuberculosis pknD in the Pathogenesis of central nervous system tuberculosis. BMC Microbiology, 2012, 12, 7.	3.3	62
107	Adjunctive TNF Inhibition with Standard Treatment Enhances Bacterial Clearance in a Murine Model of Necrotic TB Granulomas. PLoS ONE, 2012, 7, e39680.	2.5	67
108	Successful Shortening of Tuberculosis Treatment Using Adjuvant Host-Directed Therapy with FDA-Approved Phosphodiesterase Inhibitors in the Mouse Model. PLoS ONE, 2012, 7, e30749.	2.5	61

#	Article	IF	CITATIONS
109	Gene Expression of Mycobacterium tuberculosis Putative Transcription Factors whiB1-7 in Redox Environments. PLoS ONE, 2012, 7, e37516.	2.5	60
110	Pyrido[1,2â€ <i>a</i>]benzimidazoleâ€Based Agents Active Against Tuberculosis (TB), Multidrugâ€Resistant (MDR) TB and Extensively Drugâ€Resistant (XDR) TB. ChemMedChem, 2011, 6, 334-342.	3.2	58
111	The Mycobacterium tuberculosis protein LdtMt2 is a nonclassical transpeptidase required for virulence and resistance to amoxicillin. Nature Medicine, 2010, 16, 466-469.	30.7	242
112	Penitentiary or penthouse condo: the tuberculous granuloma from the microbe's point of view. Cellular Microbiology, 2010, 12, 301-309.	2.1	90
113	13[C]-Urea Breath Test as a Novel Point-of-Care Biomarker for Tuberculosis Treatment and Diagnosis. PLoS ONE, 2010, 5, e12451.	2.5	26
114	Noninvasive Pulmonary [¹⁸ F]-2-Fluoro-Deoxy- <scp>d</scp> -Glucose Positron Emission Tomography Correlates with Bactericidal Activity of Tuberculosis Drug Treatment. Antimicrobial Agents and Chemotherapy, 2009, 53, 4879-4884.	3.2	125
115	Extrapulmonary Dissemination of <i>Mycobacterium bovis</i> but Not <i>Mycobacterium tuberculosis</i> in a Bronchoscopic Rabbit Model of Cavitary Tuberculosis. Infection and Immunity, 2009, 77, 598-603.	2.2	61
116	Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature, 2009, 460, 98-102.	27.8	199
117	cAMP signaling in Mycobacterium tuberculosis. Indian Journal of Experimental Biology, 2009, 47, 393-400.	0.0	19
118	The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome. Tuberculosis, 2008, 88, 187-196.	1.9	97
119	Characterization of a Novel Cell Wall-anchored Protein with Carboxylesterase Activity Required for Virulence in Mycobacterium tuberculosis. Journal of Biological Chemistry, 2007, 282, 18348-18356.	3.4	73
120	Defining the 'survivasome' of Mycobacterium tuberculosis. Nature Medicine, 2007, 13, 280-282.	30.7	13
121	Daily Dosing of Rifapentine Cures Tuberculosis in Three Months or Less in the Murine Model. PLoS Medicine, 2007, 4, e344.	8.4	184
122	Macrolide immunomodulatory effects and symptom resolution in acute exacerbation of chronic bronchitis and acute maxillary sinusitis: a focus on clarithromycin. Expert Review of Anti-Infective Therapy, 2006, 4, 405-416.	4.4	11
123	Regulation of the expression of whiB1 in Mycobacterium tuberculosis: role of cAMP receptor protein. Microbiology (United Kingdom), 2006, 152, 2749-2756.	1.8	44
124	Mycobacterium smegmatis whmD and its homologue Mycobacterium tuberculosis whiB2 are functionally equivalent. Microbiology (United Kingdom), 2006, 152, 2735-2747.	1.8	42
125	Designer Arrays for Defined Mutant Analysis To Detect Genes Essential for Survival of Mycobacterium tuberculosis in Mouse Lungs. Infection and Immunity, 2005, 73, 2533-2540.	2.2	139
126	Clinical Significance of Pneumococcal Resistance and Factors Influencing Outcomes. Treatments in Respiratory Medicine, 2005, 4, 19???23.	1.4	6

#	Article	IF	CITATIONS
127	Moxifloxacin-containing Regimens of Reduced Duration Produce a Stable Cure in Murine Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2004, 170, 1131-1134.	5.6	213
128	<i>Mycobacterium tuberculosis</i> ECF sigma factor <i>sigC</i> is required for lethality in mice and for the conditional expression of a defined gene set. Molecular Microbiology, 2004, 52, 25-38.	2.5	124
129	A postgenomic method for predicting essential genes at subsaturation levels of mutagenesis: Application to Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7213-7218.	7.1	346
130	The in vivo-in vitro paradox in pneumococcal respiratory tract infections. Journal of Antimicrobial Chemotherapy, 2002, 49, 433-436.	3.0	65
131	Issues in the management of bacterial sinusitis. Otolaryngology - Head and Neck Surgery, 2002, 127, S3-S9.	1.9	25
132	Current issues on resistance, treatment guidelines, and the appropriate use of fluoroquinolones for respiratory tract infections. Clinical Therapeutics, 2002, 24, 838-850.	2.5	13
133	Latent Mycobacterium tuberculosis–persistence, patience and winning by waiting. Nature Medicine, 2000, 6, 1327-1329.	30.7	244
134	Lipid lunch for persistent pathogen. Nature, 2000, 406, 683-684.	27.8	62
135	Construction and Characterization of a <i>Mycobacterium tuberculosis</i> Mutant Lacking the Alternate Sigma Factor Gene, <i>sigF</i> . Infection and Immunity, 2000, 68, 5575-5580.	2.2	131
136	Moxifloxacin (BAY12-8039), a New 8-Methoxyquinolone, Is Active in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 1999, 43, 85-89.	3.2	130
137	Conditional Sigma Factor Expression, Using the Inducible Acetamidase Promoter, Reveals that the <i>Mycobacterium tuberculosis sigF</i> Gene Modulates Expression of the 16-Kilodalton Alpha-Crystallin Homologue. Journal of Bacteriology, 1999, 181, 7629-7633.	2.2	35
138	Mechanisms of latency in Mycobacterium tuberculosis. Trends in Microbiology, 1998, 6, 107-112.	7.7	398
139	Molecular Basis of Drug Resistance inMycobacterium tuberculosis. , 0, , 411-429.		0