Tomokazu Fukutsuka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6573949/publications.pdf Version: 2024-02-01

		172457	214800
130	2,943	29	47
papers	citations	h-index	g-index
132	132	132	3530
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation and characterization of alkylamine-intercalated graphite oxides. Carbon, 2007, 45, 1005-1012.	10.3	147
2	Carbon-coated stainless steel as PEFC bipolar plate material. Journal of Power Sources, 2007, 174, 199-205.	7.8	147
3	Preparation and characterization of silylated graphite oxide. Carbon, 2005, 43, 2875-2882.	10.3	108
4	Depth-resolved X-ray absorption spectroscopic study on nanoscale observation of the electrode–solid electrolyte interface for all solid state lithium ion batteries. Journal of Materials Chemistry, 2011, 21, 10051.	6.7	93
5	Introduction of amino groups into the interlayer space of graphite oxide using 3-aminopropylethoxysilanes. Carbon, 2007, 45, 1384-1390.	10.3	92
6	Removal of formaldehyde from gas phase by silylated graphite oxide containing amino groups. Carbon, 2008, 46, 1162-1163.	10.3	84
7	Origin of the Electrochemical Stability of Aqueous Concentrated Electrolyte Solutions. Journal of the Electrochemical Society, 2018, 165, A3299-A3303.	2.9	81
8	Synthesis of polyaniline-intercalated layered materials via exchange reaction. Journal of Materials Chemistry, 2002, 12, 1592-1596.	6.7	79
9	Silylation of graphite oxide. Carbon, 2004, 42, 2117-2119.	10.3	71
10	Lithium-ion transfer at interface between carbonaceous thin film electrode/electrolyte. Journal of Power Sources, 2004, 127, 72-75.	7.8	65
11	New Magnesium-ion Conductive Electrolyte Solution Based on Triglyme for Reversible Magnesium Metal Deposition and Dissolution at Ambient Temperature. Chemistry Letters, 2014, 43, 1788-1790.	1.3	60
12	XPS studies on passive film formed on stainless steel in a high-temperature and high-pressure methanol solution containing chloride ions. Corrosion Science, 2008, 50, 2840-2845.	6.6	59
13	Electrochemical oxidation of ethylene glycol on Pt-based catalysts in alkaline solutions and quantitative analysis of intermediate products. Electrochimica Acta, 2011, 56, 7610-7614.	5.2	59
14	Catalytic Roles of Perovskite Oxides in Electrochemical Oxygen Reactions in Alkaline Media. Journal of the Electrochemical Society, 2014, 161, F694-F697.	2.9	54
15	Suppression of Dendrite Formation of Zinc Electrodes by the Modification of Anion-Exchange Ionomer. Electrochemistry, 2012, 80, 725-727.	1.4	53
16	Electronic and local structural changes with lithium-ion insertion in TiO2-B: X-ray absorption spectroscopy study. Journal of Materials Chemistry, 2011, 21, 15369.	6.7	49
17	Butyrolactone derivatives as electrolyte additives for lithium-ion batteries with graphite anodes. Journal of Power Sources, 2003, 119-121, 373-377.	7.8	48
18	Single-step synthesis of nano-sized perovskite-type oxide/carbon nanotube composites and their electrocatalytic oxygen-reduction activities. Journal of Materials Chemistry, 2011, 21, 1913-1917.	6.7	48

#	Article	IF	CITATIONS
19	Characterization of n-hexadecylalkylamine-intercalated graphite oxides as sorbents. Carbon, 2003, 41, 1545-1550.	10.3	42
20	Electrochemical intercalation of bis(fluorosulfonyl)amide anions into graphite from aqueous solutions. Electrochemistry Communications, 2019, 100, 26-29.	4.7	42
21	Electrochemical Intercalation of Bis(fluorosulfonyl)amide Anion into Graphite. Journal of the Electrochemical Society, 2016, 163, A499-A503.	2.9	36
22	Preparation of Pillared Carbons by Pyrolysis of Silylated Graphite Oxide. Chemistry Letters, 2007, 36, 1050-1051.	1.3	34
23	Preparation and characterization of pillared carbons obtained by pyrolysis of silylated graphite oxides. Carbon, 2009, 47, 804-811.	10.3	33
24	Electrochemical properties of graphite electrode in propylene carbonate-based electrolytes containing lithium and calcium ions. Electrochimica Acta, 2011, 56, 10450-10453.	5.2	31
25	Electrochemical Intercalation/De-Intercalation of Lithium Ions at Graphite Negative Electrode in TMP-Based Electrolyte Solution. Journal of the Electrochemical Society, 2012, 159, A2089-A2091.	2.9	31
26	Kinetics of Lithium-Ion Transfer at the Interface between Li4Ti5O12 Thin Films and Organic Electrolytes. ECS Electrochemistry Letters, 2014, 3, A83-A86.	1.9	31
27	Enhanced resistance to oxidative decomposition of aqueous electrolytes for aqueous lithium-ion batteries. Chemical Communications, 2016, 52, 4979-4982.	4.1	31
28	Observation of the intercalation of dimethyl sulfoxide-solvated lithium ion into graphite and decomposition of the ternary graphite intercalation compound using in situ Raman spectroscopy. Electrochimica Acta, 2018, 265, 41-46.	5.2	31
29	Electrochemical Properties of Carbonaceous Thin Films Prepared by Plasma Chemical Vapor Deposition. Journal of the Electrochemical Society, 2001, 148, A1260.	2.9	30
30	Nanosized Effect on Electronic/Local Structures and Specific Lithium-Ion Insertion Property in TiO ₂ –B Nanowires Analyzed by X-ray Absorption Spectroscopy. Chemistry of Materials, 2011, 23, 3636-3644.	6.7	30
31	Lithium-ion transfer at the interfaces between LiCoO2 and LiMn2O4 thin film electrodes and organic electrolytes. Journal of Power Sources, 2015, 294, 460-464.	7.8	30
32	Electrochemical properties of LiCoPO4-thin film electrodes in LiF-based electrolyte solution with anion receptors. Journal of Power Sources, 2016, 306, 753-757.	7.8	29
33	Lithium-ion intercalation and deintercalation behaviors of graphitized carbon nanospheres. Journal of Materials Chemistry A, 2018, 6, 1128-1137.	10.3	28
34	Chargeâ€Transfer Kinetics of The Solidâ€Electrolyte Interphase on Li ₄ Ti ₅ O ₁₂ Thinâ€Film Electrodes. ChemSusChem, 2020, 13, 4041-4050.	6.8	28
35	Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes. Electrochimica Acta, 2016, 199, 380-387.	5.2	27
36	In Situ Measurement of Local pH at Working Electrodes in Neutral pH Solutions by the Rotating Ringâ€Disk Electrode Technique. ChemElectroChem, 2019, 6, 4750-4756.	3.4	27

Томокаzu Fukutsuka

#	Article	IF	CITATIONS
37	Investigation of Electrochemical Sodium-Ion Intercalation Behavior into Graphite-Based Electrodes. Journal of the Electrochemical Society, 2019, 166, A5323-A5327.	2.9	27
38	Role of Local and Electronic Structural Changes with Partially Anion substitution Lithium Manganese Spinel Oxides on Their Electrochemical Properties: X-ray Absorption Spectroscopy Study. Dalton Transactions, 2011, 40, 9752.	3.3	26
39	Structural insights into ion conduction of layered double hydroxides with various proportions of trivalent cations. Journal of Materials Chemistry A, 2013, 1, 14569.	10.3	25
40	Determination of lithium ion diffusion in lithium–manganese-oxide-spinel thin films by secondary-ion mass spectrometry. Journal of Power Sources, 2009, 189, 643-645.	7.8	24
41	Influence of surfactants as additives to electrolyte solutions on zinc electrodeposition and potential oscillation behavior. Journal of Applied Electrochemistry, 2016, 46, 1067-1073.	2.9	24
42	Improvement of Li-ion conductivity in A-site disordering lithium-lanthanum-titanate perovskite oxides by adding LiF in synthesis. Journal of Power Sources, 2009, 189, 536-538.	7.8	23
43	Ionic and Electronic Conductivities and Fuel Cell Performance of Oxygen Excess-Type Lanthanum Silicates. Journal of the Electrochemical Society, 2010, 157, B1465.	2.9	23
44	Lithium-Ion Transfer Reaction at the Interface between Partially Fluorinated Insertion Electrodes and Electrolyte Solutions. Journal of Physical Chemistry C, 2011, 115, 12990-12994.	3.1	23
45	Influence of carbonaceous materials on electronic conduction in electrode-slurry. Carbon, 2017, 122, 202-206.	10.3	23
46	Surface modification of graphitized carbonaceous materials by electropolymerization of thiophene and their effects on electrochemical properties. Carbon, 2005, 43, 2352-2357.	10.3	22
47	Effect of cation doping on ionic and electronic properties for lanthanum silicate-based solid electrolytes. Solid State Ionics, 2011, 192, 195-199.	2.7	22
48	In situ Raman investigation of electrolyte solutions in the vicinity of graphite negative electrodes. Physical Chemistry Chemical Physics, 2016, 18, 27486-27492.	2.8	22
49	Strontium cobalt oxychlorides: enhanced electrocatalysts for oxygen reduction and evolution reactions. Chemical Communications, 2017, 53, 2713-2716.	4.1	22
50	Lithium-Ion Transfer at the Interface between High Potential Negative Electrodes and Ionic Liquids. Journal of the Electrochemical Society, 2014, 161, A1939-A1942.	2.9	21
51	Investigation of Electronic Resistance in Lithium-Ion Batteries by AC Impedance Spectroscopy. Journal of the Electrochemical Society, 2017, 164, A3862-A3867.	2.9	20
52	Electrochemical lithium ion intercalation into graphite electrode in propylene carbonate-based electrolytes with dimethyl carbonate and calcium salt. Journal of Power Sources, 2013, 238, 65-68.	7.8	19
53	Preparation of surface-modified carbonaceous thin-film electrodes by NF3 plasma and their electrochemical properties. Journal of Power Sources, 2005, 146, 151-155.	7.8	18
54	Influence of Surface Orientation on the Catalytic Activities of La 0.8 Sr 0.2 CoO 3 Crystal Electrodes for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2016, 3, 214-217.	3.4	18

Томокаzu Fukutsuka

#	Article	IF	CITATIONS
55	Preparation and Fluorescent Properties of Rhodamine B–hexadecylamine-intercalated Graphite Oxide Thin Film. Chemistry Letters, 2003, 32, 1004-1005.	1.3	17
56	Enhanced Fluorescence from Rhodamine B Intercalated into Hydrophobized Graphite Oxides Containing Perfluoroalkyl Chains. Chemistry Letters, 2004, 33, 1432-1433.	1.3	16
57	In situ Raman spectroscopic analysis of solvent co-intercalation behavior into a solid electrolyte interphase-covered graphite electrode. Journal of Applied Electrochemistry, 2019, 49, 639-646.	2.9	16
58	<i>In Situ</i> Local pH Measurements with Hydrated Iridium Oxide Ring Electrodes in Neutral pH Aqueous Solutions. Chemistry Letters, 2020, 49, 195-198.	1.3	16
59	Photochemical dimerization of acenaphthylene in surfactant-intercalated graphite oxide. Carbon, 2002, 40, 958-961.	10.3	15
60	Surface Modification of Graphitized Carbonaceous Thin-Film Electrodes with Silver for Enhancement of Interfacial Lithium-Ion Transfer. Journal of Physical Chemistry C, 2012, 116, 12422-12425.	3.1	15
61	Electrochemical preparation of a lithium–graphite-intercalation compound in a dimethyl sulfoxide-based electrolyte containing calcium ions. Carbon, 2013, 57, 232-238.	10.3	15
62	Suppression of Co-Intercalation Reaction of Propylene Carbonate and Lithium Ion into Graphite Negative Electrode by Addition of Diglyme. Journal of the Electrochemical Society, 2016, 163, A1265-A1269.	2.9	15
63	Insight into the state of the ZrO2 coating on a LiCoO2 thin-film electrode using the ferrocene redox reaction. Journal of Applied Electrochemistry, 2017, 47, 1203-1211.	2.9	15
64	Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts. Chemistry of Materials, 2020, 32, 8195-8202.	6.7	15
65	Improvement in Corrosion Properties of Carbon-coated Fe-based Metals for PEFC Bipolar Plate. Electrochemistry, 2007, 75, 152-154.	1.4	14
66	Investigations of Electrochemically Active Regions in Bifunctional Air Electrodes Using Partially Immersed Platinum Electrodes. Journal of the Electrochemical Society, 2015, 162, A1646-A1653.	2.9	14
67	Photochemical dimerization of acenaphthylene in hydrophobized graphite oxide. Molecular Crystals and Liquid Crystals, 2002, 386, 45-50.	0.9	13
68	Preparation of silylated magadiite thin-film-containing covalently attached pyrene chromophores. Journal of Fluorine Chemistry, 2008, 129, 1150-1155.	1.7	13
69	Electrochemical hydrogenation of carbon from pyrolysis of graphite oxide. Carbon, 2003, 41, 2167-2170.	10.3	12
70	Electrochemical Properties of Graphitized Carbonaceous Thin Films Prepared by PACVD. Journal of the Electrochemical Society, 2004, 151, C694.	2.9	12
71	Effect of the Addition of Bivalent Ions on Electrochemical Lithium-Ion Intercalation at Graphite Electrodes. Journal of the Electrochemical Society, 2016, 163, A1693-A1696.	2.9	12
72	Development of New Electronic Conductivity Measurement Method for Lithium-ion Battery Electrode–Slurry. Chemistry Letters, 2017, 46, 892-894.	1.3	12

#	Article	IF	CITATIONS
73	In Situ AFM Observation of Surface Morphology of Highly Oriented Pyrolytic Graphite in Propylene Carbonate-Based Electrolyte Solutions Containing Lithium and Bivalent Cations. Journal of the Electrochemical Society, 2017, 164, A48-A53.	2.9	12
74	Electrochemical Intercalation of Li into Carbon Thin Films Prepared by Plasma CVD. Molecular Crystals and Liquid Crystals, 2000, 340, 517-522.	0.3	11
75	Lithium Ion Transfer At Carbon Thin Film Electrode/Electrolyte Interface. Molecular Crystals and Liquid Crystals, 2002, 388, 141-146.	0.9	11
76	Reaction between dibutyltin oxide and graphite oxide. Carbon, 2006, 44, 3134-3135.	10.3	11
77	Electronic structures of partially fluorinated lithium manganese spinel oxides and their electrochemical properties. Journal of Power Sources, 2009, 189, 599-601.	7.8	11
78	Cathode having high rate performance for a secondary Li-ion cell surface-modified by aluminum oxide nanoparticles. Journal of Power Sources, 2009, 189, 471-475.	7.8	11
79	Lithium-ion Transfer Kinetics through Solid Electrolyte Interphase on Graphite Electrodes. Electrochemistry, 2020, 88, 69-73.	1.4	11
80	Monomeric Dispersion of Covalently Attached Pyrene Chromophores in Silylated Graphite Oxide. Chemistry Letters, 2006, 35, 530-531.	1.3	10
81	Lithium-ion Transfer at the Interface between Solid and Liquid Electrolytes under Applying DC Voltage. Chemistry Letters, 2010, 39, 826-827.	1.3	10
82	Investigation of the Surface State of LiCoO2Thin-Film Electrodes Using a Redox Reaction of Ferrocene. Journal of the Electrochemical Society, 2017, 164, A555-A559.	2.9	10
83	Direct measurements of local current distributions on electrodes covered with thin liquid electrolyte films. Electrochemistry Communications, 2017, 84, 53-56.	4.7	10
84	Improvement in stability of LiMn2O4 thin-film electrodes by oxygen-plasma irradiation to precursor gel. Journal of Solid State Electrochemistry, 2011, 15, 503-510.	2.5	9
85	Kinetic properties of sodium-ion transfer at the interface between graphitic materials and organic electrolyte solutions. Journal of Applied Electrochemistry, 2021, 51, 629-638.	2.9	9
86	Preparation of LiMn[sub 2]O[sub 4] Thin-Film Electrode by the Oxygen Plasma-Assisted Sol-Gel Method. Electrochemical and Solid-State Letters, 2004, 7, A481.	2.2	8
87	Cathode properties of birnessite type manganese oxide prepared by using vanadium xerogel. Journal of Power Sources, 2005, 146, 300-303.	7.8	8
88	Dispersion of Organic Dyes in n-Hexadecylamine-Intercalated Vanadium Xerogel Thin Films. Molecular Crystals and Liquid Crystals, 2006, 452, 137-158.	0.9	8
89	Electrochemical properties of surface-modified hard carbon electrodes for lithium-ion batteries. Electrochimica Acta, 2021, 379, 138175.	5.2	8
90	Surface Plasma Modification of Carbonaceous Thin Film Electrodes. Electrochemistry, 2003, 71, 1111-1113.	1.4	8

#	Article	IF	CITATIONS
91	Surface Modification Of Carbonaceous Thin Films By Nf 3 Plasma And Their Effects On Electrochemical Properties. Molecular Crystals and Liquid Crystals, 2002, 388, 117-122.	0.9	7
92	Formation of "fuzzy―phases with high proton conductivities in the composites of polyphosphoric acid and metal oxide nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 11135.	2.8	7
93	Solid electrolyte interphase formation in propylene carbonate-based electrolyte solutions for lithium-ion batteries based on the Lewis basicity of the co-solvent and counter anion. Journal of Applied Electrochemistry, 2016, 46, 1099-1107.	2.9	7
94	Investigation on Surface-Film Formation Behavior of LiMn2 O4 Thin-Film Electrodes in LiClO4 /Propylene Carbonate. ChemistrySelect, 2017, 2, 2895-2900.	1.5	7
95	Relation between Mixing Processes and Properties of Lithium-ion Battery Electrode-slurry. Electrochemistry, 2021, 89, 585-589.	1.4	7
96	Ion-solvent interaction for lithium-ion transfer at the interface between carbonaceous thin-film electrode and electrolyte. Tanso, 2010, 2010, 188-191.	0.1	7
97	Hydrophilic Treatment of Carbon-coated Metal by Plasma Fluorination. Chemistry Letters, 2007, 36, 1440-1441.	1.3	6
98	Factors Affecting the Formation of Carbon Film on the Stainless Steels for the Bipolar Plate of Polymer Electrolyte Fuel Cells. Journal of Fuel Cell Science and Technology, 2011, 8, .	0.8	6
99	Lithium-Ion Intercalation by Calcium-Ion Addition in Propylene Carbonate-Trimethyl Phosphate Electrolyte Solution. Journal of the Electrochemical Society, 2018, 165, A349-A354.	2.9	6
100	Preparation and Electrochemical Properties of Carbonaceous Thin Films Prepared by C2H4/NF3 Glow Discharge Plasma. Tanso, 1999, 1999, 252-256.	0.1	6
101	Acceptor-type hydroxide graphite intercalation compounds electrochemically formed in high ionic strength solutions. Chemical Communications, 2017, 53, 10034-10037.	4.1	5
102	Characterization of the Interface between LiMn ₂ O ₄ Thin-film Electrode and LiBOB-based Electrolyte Solution by Redox Reaction of Ferrocene. Electrochemistry, 2018, 86, 254-259.	1.4	5
103	Electrochemical Surface Analysis of LiMn ₂ O ₄ Thin-film Electrodes in LiPF ₆ /Propylene Carbonate at Room and Elevated Temperatures. Electrochemistry, 2021, 89, 19-24.	1.4	5
104	Effect of Electrolyte Additives on Kinetic Parameters of Lithium-ion Transfer Reactions at Electrolyte/Graphite Interface. Electrochemistry, 2020, 88, 365-368.	1.4	5
105	Electrochemical Performances of Zinc Oxide Electrodes Coated with Layered Double Hydroxides in Alkaline Solutions. Chemistry Letters, 2015, 44, 1359-1361.	1.3	4
106	Electrochemical Behavior of Spinel Lithium Titanate in Ionic Liquid/Water Bilayer Electrolyte. Journal of the Electrochemical Society, 2016, 163, A2497-A2500.	2.9	4
107	Electrochemical Behavior of Graphitized Carbon Nanospheres in a Propylene Carbonate-Based Electrolyte Solution. Journal of the Electrochemical Society, 2018, 165, A2247-A2254.	2.9	4
108	Concentrated Sodium Bis(fluorosulfonyl)amide Aqueous Electrolyte Solutions for Electric Double-layer Capacitors. Electrochemistry, 2020, 88, 91-93.	1.4	4

Томокаzu Fukutsuka

#	Article	IF	CITATIONS
109	Sodium/Lithium-Ion Transfer Reaction at the Interface between Low-Crystallized Carbon Nanosphere Electrodes and Organic Electrolytes. ACS Omega, 2021, 6, 18737-18744.	3.5	4
110	Surface Modification of Carbonaceous Thin Films by Electropolymerization of Pyrrole and its Effects on Electrochemical Properties (1). Tanso, 2003, 2003, 217-220.	0.1	3
111	Investigation of the Surface Film Forming Process on Nongraphitizable Carbon Electrodes by In-situ Atomic Force Microscopy. Electrochemistry, 2016, 84, 769-771.	1.4	3
112	Sodium-ion Intercalation Behavior of Graphitized Carbon Nanospheres Covered with Basal Plane. Chemistry Letters, 2019, 48, 799-801.	1.3	3
113	Solvated Lithium Ion Intercalation Behavior of Graphitized Carbon Nanospheres. Electrochemistry, 2020, 88, 79-82.	1.4	3
114	Molecular Structural Influence of Glymes on Co-Intercalation Behavior of Solvated Li ⁺ in Graphite Electrodes. Journal of the Electrochemical Society, 2021, 168, 060525.	2.9	3
115	Preparation of carbon-coated stainless steels and their properties as bipolar plate materials of polymer electrolyte fuel cells. Tanso, 2011, 2011, 54-58.	0.1	3
116	Kinetics of Interfacial Lithium-ion Transfer between a Graphite Negative Electrode and a Li ₂ S-P ₂ S ₅ Glassy Solid Electrolyte. Electrochemistry, 2022, 90, 037003-037003.	1.4	3
117	Investigation on Oxygen Potential Distribution in a ZrO ₂ -Based Solid Electrolyte by Using In-Situ Micro XAS Technique. ECS Transactions, 2009, 25, 345-348.	0.5	2
118	Influences of metal oxides on carbon corrosion under imposed electrochemical potential conditions. Carbon, 2012, 50, 1644-1649.	10.3	2
119	Fabrication of Step-edge-decorated Graphite Electrodes with Platinum and Their Electrocatalytic Activities. Chemistry Letters, 2013, 42, 606-608.	1.3	2
120	Impact of Hydrogen Peroxide on Carbon Corrosion in Aqueous KOH Solution. Electrochemistry, 2022, 90, 017011-017011.	1.4	2
121	Effects of Solvation Structures on the Co-intercalation Suppression Ability of the Solid Electrolyte Interphase Formed on Graphite Electrodes. Chemistry Letters, 2022, 51, 618-621.	1.3	2
122	Local Current Distributions on Electrodes Covered with Anion-exchange Films. Chemistry Letters, 2018, 47, 171-174.	1.3	1
123	Chargeâ€Transfer Kinetics of the Solid–Electrolyte Interphase on Li 4 Ti 5 O 12 Thinâ€Film Electrodes. ChemSusChem, 2020, 13, 3944-3944.	6.8	1
124	The compatibility of propylene carbonate-based electrolyte solutions with graphite negative electrodes in lithium-ion batteries. Tanso, 2018, 2018, 108-117.	0.1	1
125	Preparation of carbonaceous thin films by plasma-assisted chemical vapor deposition and their application to energy devices. Tanso, 2007, 2007, 352-361.	0.1	0
126	Lithium-Ion Conductivity in Lithium Lanthanum Titanates as Different Local Distortion Model Compounds. Electrochemistry, 2010, 78, 457-459.	1.4	0

#	Article	IF	CITATIONS
127	Ion Transport Phenomena in Anodic Nanoporous Alumina Membranes. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2019, 70, 31-34.	0.2	Ο
128	Preparation of carbonaceous thin films by plasma-assisted chemical vapor deposition using active fluorine atoms. Tanso, 2007, 2007, 293-298.	0.1	0
129	Electrochemical properties of carbon nanofibers as the negative electrode in lithium-ion batteries. Tanso, 2013, 2013, 52-56.	0.1	0
130	Interfacial lithium-ion transfer between the graphite negative electrode and the electrolyte solution. Tanso, 2020, 2020, 9-14.	0.1	0